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Abstract

Timing attacks are usually used to attack weak computing devices such as smartcards. We show that timing attacks

apply to general software systems. Specifically, we devise a timing attack against OpenSSL. Our experiments show that

we can extract private keys from an OpenSSL-based web server running on a machine in the local network. Our results

demonstrate that timing attacks against network servers are practical and therefore security systems should defend

against them.
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1. Introduction

Timing attacks enable an attacker to extract se-

crets maintained in a security system by observing

the time it takes the system to respond to various

queries. For example, Kocher [11] designed a tim-

ing attack to expose secret keys used for RSA

decryption. Until now, these attacks were only ap-
plied in the context of hardware security tokens

such as smartcards [5,11,19]. It is generally be-

lieved that timing attacks cannot be used to attack

general purpose servers, such as web servers, since

decryption times are masked by many concurrent
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processes running on the system. It is also believed

that common implementations of RSA (using Chi-

nese Remainder and Montgomery reductions) are

not vulnerable to timing attacks.

We challenge both assumptions by developing a

remote timing attack against OpenSSL [16], an

SSL library commonly used in web servers and

other SSL applications. Our attack client measures
the time an OpenSSL server takes to respond to

decryption queries. The client is able to extract

the private key stored on the server. The attack

applies in several environments.

Network. We successfully mounted our timing

attack between two machines on our campus net-

work. The attacking machine and the server were

in different buildings with three routers and multi-
ple switches between them. With this setup we
ed.
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were able to extract the SSL private key from com-

mon SSL applications such as a web server (Apa-

che + mod_SSL) and a SSL-tunnel.

Interprocess. We successfully mounted the at-

tack between two processes running on the same
machine. A hosting center that hosts two domains

on the same machine might give management ac-

cess to the admins of each domain. Since both do-

main are hosted on the same machine, one admin

could use the attack to extract the secret key

belonging to the other domain.

Virtual machines. A Virtual Machine Monitor

(VMM) is often used to enforce isolation between
two virtual machines (VM) running on the same

processor. One could protect an RSA private key

by storing it in one VM and enabling other VM�s
to make decryption queries. For example, a web

server could run in one VM while the private key

is stored in a separate VM. This is a natural way

of protecting secret keys since a break-in into the

web server VM does not expose the private key.
Our results show that when using OpenSSL the

network server VM can extract the RSA private

key from the secure VM, thus invalidating the iso-

lation provided by the VMM. This is especially rel-

evant to VMM projects such as Microsoft�s
NGSCB architecture (formerly Palladium). We

also note that NGSCB enables an application to

ask the VMM (aka Nexus) to decrypt (aka unseal)
application data. The application could expose the

VMM�s secret key by measuring the time the

VMM takes to respond to such requests.

Many crypto libraries completely ignore the

timing attack and have no defenses implemented

to prevent it. For example, libgcrypt [15] (used in

GNUTLS and GPG) and Cryptlib [6] do not de-

fend against timing attacks. OpenSSL 0.9.7 imple-
ments a defense against the timing attack as an

option. However, common applications such as

mod_SSL, the Apache SSL module, do not enable

this option and are therefore vulnerable to the at-

tack. These examples show that timing attacks are

a largely ignored vulnerability in many crypto

implementations. We hope the results of this paper

will help convince developers to implement proper
defenses (see Section 6). Interestingly, Mozilla�s
NSS crypto library properly defends against the

timing attack. We note that most crypto accelera-
tion cards also implement defenses against the tim-

ing attack. Consequently, network servers using

these accelerator cards are not vulnerable.

We chose to tailor our timing attack to

OpenSSL since it is the most widely used open
source SSL library. The OpenSSL implementa-

tion of RSA is highly optimized using Chinese

Remainder, Sliding Windows, Montgomery multi-

plication, and Karatsuba�s algorithm. These opti-
mizations cause both known timing attacks on

RSA [11,19] to fail in practice.

Consequently, we had to devise a new timing at-

tack based on [22,23,19–21] that is able to extract
the private key from an OpenSSL-based server.

As we will see, the performance of our attack var-

ies with the exact environment in which it is ap-

plied. Even the exact compiler optimizations used

to compile OpenSSL can make a big difference.

In Sections 2 and 3 we describe OpenSSL�s
implementation of RSA and the timing attack on

OpenSSL. In Section 4 we discuss how these at-
tacks apply to SSL. In Section 5 we describe the ac-

tual experiments we carried out. We show that

using about a million queries we can remotely ex-

tract a 1024-bit RSA private key from an OpenSSL

0.9.7 server. The attack takes about two hours. Sec-

tion 6 discusses defenses against timing attacks.

Timing attacks are related to a class of attacks

called side-channel attacks. These include power
analysis [10] and attacks based on electromagnetic

radiation [17]. Unlike the timing attack, these ex-

tended side channel attacks require special equip-

ment and often physical access to the machine.

In this paper we only focus on the timing attack.

We also note that our attack targets the implemen-

tation of RSA decryption in OpenSSL. Our timing

attack does not depend upon the RSA padding
used in SSL and TLS.
2. OpenSSL�s implementation of RSA

We begin by reviewing how OpenSSL imple-

ments RSA decryption. We only review the details

needed for our attack. OpenSSL closely follows
algorithms described in the Handbook of Applied

Cryptography [12], where more information is

available.
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2.1. OpenSSL decryption

At the heart of RSA decryption is a modular

exponentiation m = cdmodN where N = pq is the

RSA modulus, d is the private decryption expo-
nent, and c is the ciphertext being decrypted.

OpenSSL uses the Chinese Remainder Theorem

(CRT) to perform this exponentiation. With Chi-

nese remaindering, the function m = cdmodN is

computed in two steps. First, evaluate

m1 ¼ cd1 modp and m2 ¼ cd2 modq (here d1 and

d2 are precomputed from d). Then, combine m1

and m2 using CRT to yield m.
RSA decryption with CRT gives up to a factor

of four speedup, making it essential for competi-

tive RSA implementations. RSA with CRT is not

vulnerable to Kocher�s original timing attack

[11]. Nevertheless, since RSA with CRT uses the

factors of N, a timing attack can expose these fac-

tors. Once the factorization of N is revealed it is

easy to obtain the decryption key by computing
d = e�1mod(p � 1)(q � 1), where e is the public

encryption exponent.

2.2. Exponentiation

During an RSA decryption with CRT,

OpenSSL computes cd1 modp and cd2 modq. Both
computations are done using the same code. For
simplicity we describe how OpenSSL computes

gdmodq for some g, d, and q.

The simplest algorithm for computing gd mod q

is square and multiply. The algorithm squares g

approximately log2d times, and performs approxi-
mately log2d/2 additional multiplications by g.

After each step, the product is reduced modulo q.

OpenSSL uses an optimization of square and
multiply called sliding windows exponentiation.

When using sliding windows a block of bits (win-

dow) of d are processed at each iteration, where

as simple square-and-multiply processes only one

bit of d per iteration. Sliding windows requires

pre-computing a multiplication table, which takes

time proportional to 2w�1 + 1 for a window of size

w. Hence, there is an optimal window size that bal-
ances the time spent during precomputation vs.

actual exponentiation. For a 1024-bit modulus

OpenSSL uses a window size of five so that about
five bits of the exponent d are processed in every

iteration.

For our attack, the key fact about sliding win-

dows is that during the algorithm there are many

multiplications by g, where g is the input cipher-
text. By querying on many inputs g the attacker

can expose information about bits of the factor

q. We note that a timing attack on sliding windows

is much harder than a timing attack on square-

and-multiply since there are far fewer multiplica-

tions by g in sliding windows. As we will see, we

had to adapt our techniques to handle sliding win-

dows exponentiation used in OpenSSL.

2.3. Montgomery reduction

The sliding windows exponentiation algorithm

performs a modular multiplication at every step.

Given two integers x,y, computing xymodq is

done by first multiplying the integers x*y and then

reducing the result modulo q. Later we will see
each reduction also requires a few additional mul-

tiplications. We first briefly describe OpenSSL�s
modular reduction method and then describe its

integer multiplication algorithm.

Naively, a reduction modulo q is done via

multi-precision division and returning the remain-

der. This is quite expensive. In 1985 Peter Mont-

gomery discovered a method for implementing a
reduction modulo q using a series of operations

efficient in hardware and software [14].

Montgomery reduction transforms a reduction

modulo q into a reduction modulo some power

of 2 denoted by R. A reduction modulo a power

of 2 is faster than a reduction modulo q as many

arithmetic operations can be implemented directly

in hardware. However, in order to use Montgom-
ery reduction all variables must first be put into

Montgomery form. The Montgomery form of

number x is simply xRmodq. To multiply two

numbers a and b in Montgomery form we do the

following. First, compute their product as integers:

aR*bR = cR2. Then, use the fast Montgomery

reduction algorithm to compute cR2*R
�1 =

cRmodq. Note that the result cRmodq is in
Montgomery form, and thus can be directly used

in subsequent Montgomery operations. At the

end of the exponentiation algorithm the output is
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put back into standard (non-Montgomery) form

by multiplying it by R�1modq. For our attack, if

R = 2xmodq, it is equivalent to use R = 2xmodN,

which is public.

Hence, for the small penalty of converting the
input g to Montgomery form, a large gain is

achieved during modular reduction. With typical

RSA parameters the gain from Montgomery

reduction outweighs the cost of initially putting

numbers in Montgomery form and converting

back at the end of the algorithm.

The key relevant fact about a Montgomery

reduction is at the end of the reduction one checks
if the output cR is greater than q. If so, one sub-

tracts q from the output, to ensure that the output

cR is in the range [0,q). This extra step is called an

extra reduction and causes a timing difference for

different inputs. Schindler noticed that the proba-

bility of an extra reduction during an exponentia-

tion gdmodq is proportional to how close g is to q

[19]. Schindler showed that the probability for an
extra reduction is:

Pr½Extra reduction� ¼ gmodq
2R

: ð1Þ

Consequently, as g approaches either factor p or q

from below, the number of extra reductions during
the exponentiation algorithm greatly increases. At

exact multiples of p or q, the number of extra

reductions drops dramatically. Fig. 1 shows this
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Fig. 1. Number of extra reductions in a Montgomery reduction

as a function (equation 1) of the input g.
relationship, with the discontinuities appearing at

multiples of p and q. By detecting timing differ-

ences that result from extra reductions we can tell

how close g is to a multiple of one of the factors.

2.4. Multiplication routines

RSA operations, including those using Mont-

gomery�s method, must make use of a multi-preci-
sion integer multiplication routine. OpenSSL

implements two multiplication routines: Karat-

suba (sometimes called recursive) and ‘‘normal’’.

Multi-precision libraries represent large integers
as a sequence of words. OpenSSL uses Karatsuba

multiplication when multiplying two numbers with

an equal number of words. Karatsuba multiplica-

tion takes time Oðnlog23Þ which is O(n1.58).

OpenSSL uses normal multiplication, which runs

in time O(nm), when multiplying two numbers

with an unequal number of words of size n and

m. Hence, for numbers that are approximately
the same size (i.e. n is close to m) normal multipli-

cation takes quadratic time.

Thus, OpenSSL�s integer multiplication routine
leaks important timing information. Since Karat-

suba is typically faster, multiplication of two un-

equal size words takes longer than multiplication

of two equal size words. Time measurements will

reveal how frequently the operands given to the
multiplication routine have the same length. We

use this fact in the timing attack on OpenSSL.

In both algorithms, multiplication is ultimately

done on individual words. The underlying word

multiplication algorithm dominates the total time

for a decryption. For example, in OpenSSL the

underlying word multiplication routine typically

takes 30–40% of the total runtime. The time to
multiply individual words depends on the number

of bits per word. As we will see in experiment 3 the

exact architecture on which OpenSSL runs has an

impact on timing measurements used for the at-

tack. In our experiments the word size was 32 bits.

2.5. Comparison of timing differences

So far we identified two algorithmic data depen-

dencies in OpenSSL that cause time variance in

RSA decryption: (1) Schindler�s observation on
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the number of extra reductions in a Montgomery

reduction, and (2) the timing difference due to

the choice of multiplication routine, i.e. Karatsuba

vs. normal. Unfortunately, the effects of these opti-

mizations counteract one another.
Consider a timing attack where we decrypt a

ciphertext g. As g approaches a multiple of the fac-

tor q from below, Eq. (1) tells us that the number

of extra reductions in a Montgomery reduction in-

creases. When we are just over a multiple of q, the

number of extra reductions decreases dramatically.

In other words, decryption of g < q should be

slower than decryption of g > q.
The choice of Karatsuba vs. normal multiplica-

tion has the opposite effect. When g is just below a

multiple of q, then OpenSSL almost always uses

fast Karatsuba multiplication. When g is just over

a multiple of q then g mod q is small and conse-

quently most multiplications will be of integers

with different lengths. In this case, OpenSSL uses

normal multiplication which is slower. In other
words, decryption of g < q should be faster than

decryption of g > q—the exact opposite of the ef-

fect of extra reductions in Montgomery�s algo-
rithm. Which effect dominates is determined by

the exact environment. Our attack uses both ef-

fects, but each effect is dominant at a different

phase of the attack.
3. A timing attack on OpenSSL

Our attack exposes the factorization of the RSA

modulus. We combine Schindler�s attack on extra
Montgomery reductions with a new attack target-

ing the multiplication routines. Let N = pq with

q < p. We build approximations to q that get pro-
gressively closer as the attack proceeds. We call

these approximations guesses. We refine our guess

by learning bits of q one at a time, from most sig-

nificant to least. Thus, our attack can be viewed as

a binary search for q. After recovering the half-

most significant bits of q, we can use Copper-

smith�s algorithm [3] to retrieve the complete

factorization.
Initially our guess g of q lies between 2512 (i.e.

2log2N=2Þ and 2511 (i.e. 2log2ðN=2Þ�1Þ. We then time

the decryption of all possible combinations of the
top few bits (typically 2–3). When plotted, the

decryption times will show two peaks: one for q

and one for p. We pick the values that bound the

first peak, which in OpenSSL will always be q.

Suppose we already recovered the top i � 1 bits
of q. Let g be an integer that has the same top i � 1

bits as q and the remaining bits of g are 0. Then

g < q. At a high level, we recover the ith bit of q

as follows:

• Step 1—Let ghi be the same value as g, with the

ith bit set to 1. If bit i of q is 1, then g < ghi < q.

Otherwise, g < q < ghi.
• Step 2—Compute ug = gR�1modN and ughi ¼
ghiR

�1modN . This step is needed because

RSA decryption with Montgomery reduction

will calculate ugR = g and ughiR ¼ ghi to put ug
and ughi in Montgomery form before exponenti-

ation during decryption.

• Step 3—We measure the time to decrypt both ug
and ughi . Let t1 = DecryptTime(ug) and t2 ¼
DecryptTimeðughiÞ.

• Step 4—We calculate the difference D =

jt1 � t2j. If g < q < ghi then, by Section 2.5, the

difference D will be ‘‘large’’, and bit i of q is 0.

If g < ghi < q, the difference D will be ‘‘small’’,

and bit i of q is 1. We use previous D values

to know what to consider ‘‘large’’ and ‘‘small’’.

Thus we use the value jt1 � t2j as an indicator
for the ith bit of q.

When the ith bit is 0, the ‘‘large’’ difference

can either be negative or positive. In this case, if

t1 � t2 is positive then DecryptTime(g) > Decrypt-

Time(ghi), and the Montgomery reductions domi-

nated the time difference. If t1 � t2 is negative,

then DecryptTime(g) < DecryptTime(ghi), and the
multi-precision multiplication dominated the time

difference.

Formatting of RSA plaintext, e.g. PKCS 1,

does not affect this timing attack. We also do not

need the value of the decryption, only how long

the decryption takes.

3.1. Exponentiation revisited

We would like jtg1 � tg2 j � jtg3 � tg4 j when

g1 < q < g2 and g3 < g4 < q. Time measurements
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that have this property we call a strong indicator

for bits of q, and those that do not are a weak indi-

cator for bits of q. Square and multiply exponenti-

ation results in a strong indicator because there are

approximately log2d/2 multiplications by g during
decryption. However, in sliding windows with

window size w (w = 5 in OpenSSL) the expected

number of multiplications by g is only:

E½# multiply by g� 	 log2d

2w�1ðwþ 1Þ
;

resulting in a weak indicator.

To overcome this we query at a neighborhood of
values g, g + 1, g + 2, . . . ,g + n, and use the result

as the decrypt time for g (and similarly for ghi).

The total decryption time for g or ghi is then:

T g ¼
Xn

i¼0
DecryptTimeðg þ iÞ:

We define Tg as the time to compute g with sliding

windows when considering a neighborhood of val-
ues. As n grows, jT g � T ghi j typically becomes a
stronger indicator for a bit of q (at the cost of addi-

tional decryption queries).

We briefly explain why querying a neighbor-

hood results in a stronger indicator. Let I be a cer-

tain short interval, say I = [g,g + 1, . . . ,g + 100].
We know that the expected number of extra reduc-

tions when exponentiating a random element in I

depends on the distance of I from p. However,

for a specific g in I it is possible that the number

of extra reduction is far from the expected value

for the interval. This is especially true when using

sliding windows since the number of multiplica-

tions by g during exponentiation is relatively

small. By averaging (or summing) over many g�s
in the neighborhood I we obtain a much better
estimate on the expected number of extra reduc-

tions for elements in I.
4. Real-world scenarios

As mentioned in the introduction there are a

number of scenarios where the timing attack ap-
plies to networked servers. We discuss an attack

on SSL applications, such as stunnel [24] and an
Apache web server with mod_SSL [13], and an at-

tack on trusted computing projects such as Micro-

soft�s NGSCB (formerly Palladium).

During a standard full SSL handshake the SSL

server performs an RSA decryption using its pri-
vate key. The SSL server decryption takes place

after receiving the CLIENT-KEY-EXCHANGE message

from the SSL client. The CLIENT-KEY-EXCHANGE

message is composed on the client by encrypting

PKCS 1 padded random bytes with the server�s
public key. The randomness encrypted by the cli-

ent is used by the client and server to compute a

shared master secret for end-to-end encryption.
Upon receiving a CLIENT-KEY-EXCHANGE message

from the client, the server first decrypts the mes-

sage with its private key and then checks the result-

ing plaintext for proper PKCS 1 formatting. If the

decrypted message is properly formatted, the client

and server can compute a shared master secret. If

the decrypted message is not properly formatted,

the server generates its own random bytes for
computing a master secret and continues the SSL

protocol. Note that an improperly formatted

CLIENT-KEY-EXCHANGE message prevents the client

and server from computing the same master secret,

ultimately leading the server to send an ALERT

message to the client indicating the SSL handshake

has failed.

In our attack, the client substitutes a properly
formatted CLIENT-KEY-EXCHANGE message with

our guess g. The server decrypts g as a normal

CLIENT-KEY-EXCHANGE message, and then checks

the resulting plaintext for proper PKCS 1 padding.

Since the decryption of g will not be properly for-

matted, the server and client will not compute the

same master secret, and the client will ultimately

receive an ALERT message from the server. The
attacking client computes the time difference from

sending g as the CLIENT-KEY-EXCHANGE message to

receiving the response message from the server as

the time to decrypt g. The client repeats this pro-

cess for each value of of g and ghi needed to calcu-

late Tg and T ghi .

Our experiments are also relevant to trusted

computing efforts such as NGSCB. One goal of
NGSCB is to provide sealed storage. Sealed stor-

age allows an application to encrypt data to disk

using keys unavailable to the user. The timing
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attack shows that by asking NGSCB to decrypt

data in sealed storage a user may learn the secret

application key. Therefore, it is essential that the

secure storage mechanism provided by projects

such as NGSCB defend against this timing attack.
As mentioned in the introduction, RSA applica-

tions (and subsequently SSL applications using

RSA for key exchange) using a hardware crypto

accelerator are not vulnerable since most crypto

accelerators implement defenses against the timing

attack. Our attack applies to software based RSA

implementations that do not defend against timing

attacks as discussed in Section 6.
5. Experiments

We performed a series of experiments to

demonstrate the effectiveness of our attack on

OpenSSL. In each case we show the factorization

of the RSA modulus N is vulnerable. We show
that a number of factors affect the efficiency of

our timing attack.

Our experiments consisted of:

1. Test the effects of increasing the number of

decryption requests, both for the same cipher-

text and a neighborhood of ciphertexts.

2. Compare the effectiveness of the attack based
upon different keys.

3. Compare the effectiveness of the attack based

upon machine architecture and common com-

pile-time optimizations.

4. Compare the effectiveness of the attack based

upon source-based optimizations.

5. Compare inter-process vs. local network

attacks.
6. Compare the effectiveness of the attack against

two common SSL applications: an Apache

web server with mod_SSL and stunnel.

The first four experiments were carried out in-

ter-process via TCP, and directly characterize the

vulnerability of OpenSSL�s RSA decryption rou-

tine. The fifth experiment demonstrates our attack
succeeds on the local network. The sixth experi-

ment demonstrates our attack succeeds on the

local network against common SSL-enabled appli-
cations. We conclude the experiments by charac-

terizing the attack in several more settings: on a

wireless networks, on a WAN, and against servers

under load.

5.1. Experiment setup

Our attack was performed against OpenSSL

0.9.7, which does not blind RSA operations by de-

fault. All tests were run under RedHat Linux 7.3

on a 2.4 GHz Pentium 4 processor with 1 GB of

RAM, using gcc 2.96 (RedHat). All keys were gen-

erated at random via OpenSSL�s key generation
routine.

For the first 5 experiments we implemented a

simple TCP server that read an ASCII string, con-

verted the string to OpenSSL�s internal multi-pre-
cision representation, then performed the RSA

decryption. The server returned 0 to signify the

end of decryption. The TCP client measured the

time from writing the ciphertext over the socket
to receiving the reply. The SSL client measured

the time from sending the CLIENT-KEY-EXCHANGE

message to receiving a reply, as described in

Section 4.

Our timing attack requires a clock with fine res-

olution. We use the Pentium cycle counter on the

attacking machine as such a clock, giving us a time

resolution of 2.4 billion ticks per second. The cycle
counter increments once per clock tick, regardless

of the actual instruction issued. Thus, the decryp-

tion time is the cycle counter difference between

sending the ciphertext to receiving the reply. The

cycle counter is accessible via the ‘‘rdtsc’’ instruc-

tion, which returns the 64-bit cycle count since

CPU initialization. The high 32 bits are returned

into the EDX register, and the low 32 bits into
the EAX register. As recommended in [8], we use

the ‘‘cpuid’’ instruction to serialize the processor

to prevent out-of-order execution from changing

our timing measurements. Note that cpuid and

rdtsc are only used by the attacking client, and

that neither instruction is a privileged operation.

Other architectures have a similar a counter, such

as the UltraSparc % tick register.
OpenSSL generates RSA moduli N = pq where

q < p. In each case we target the smaller factor,

q. Once q is known, the RSA modulus is factored
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and, consequently, the server�s private key is

exposed.

5.2. Experiment 1—number of ciphertexts

This experiment explores the parameters that

determine the number of queries needed to expose

a single bit of an RSA factor. For any particular

bit of q, the number of queries for guess g is deter-

mined by two parameters: neighborhood size and

sample size.

• Neighborhood size. For every bit of q we mea-
sure the decryption time for a neighborhood

of values g,g + 1,g + 2, . . . ,g + n. We denote

this neighborhood size by n.

• Sample size. For each value g + i in a neighbor-

hood we sample the decryption time multiple

times and compute the mean decryption time.

The number of times we query on each value

g + i is called the sample size and is denoted
by s.

The total number of queries needed to compute

Tg is then s*n.

To overcome the effects of a multi-user environ-

ment, we repeatedly sample g + k and use the med-

ian time value as the effective decryption time. Fig.

2a shows the difference between median values as
sample size increases. The number of samples re-

quired to reach a stable decryption time is surpris-
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Fig. 2. Parameters that affect the number of decryption queries of g n

decrypting a particular ciphertext decreases as we increase the numbe

increase the zero-one gap between a bit of q that is 0 and a bit of q t
ing small, requiring only 5 samples to give a

variation of under 20000 cycles (	8 ls), well under
that needed to perform a successful attack.

We call the gap between when a bit of q is 0 and

1 the zero-one gap. This gap is related to the differ-
ence jT g � T ghi j, which we expect to be large when
a bit of q is 0 and small otherwise. The larger the

gap, the stronger the indicator that bit i is 0, and

the smaller chance of error. Fig. 2b shows that

increasing the neighborhood size increases the size

of the zero-one gap when a bit of q is 0, but is

steady when a bit of q is 1.

The total number of queries to recover a factor
is 2ns � log2N=4, where N is the RSA public mod-

ulus. Unless explicitly stated otherwise, we use a

sample size of 7 and a neighborhood size of

400 on all subsequent experiments, resulting in

1433600 total queries. With these parameters a

typical attack takes approximately 2 h. In practice,

an effective attack may need far fewer samples, as

the neighborhood and sample size can be adjusted
dynamically to give a clear zero-one gap in the

smallest number of queries.

5.3. Experiment 2—different keys

We attacked several 1024-bit keys, each ran-

domly generated, to determine the ease of break-

ing different moduli. In each case we were able to
recover the factorization of N. Fig. 3a shows our

results for 3 different keys. For clarity, we include
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only bits of q that are 0, as bits of q that are 1 are

close to the x-axis. In all our figures the time differ-

ence T g � T ghi is the zero-one gap. When the zero-

one gap for bit i is far from the x-axis we can

correctly deduce that bit i is 0.

With all keys the zero-one gap is positive for
about the first 32 bits due to Montgomery reduc-

tions, since both g and ghi use Karatsuba multipli-

cation. After bit 32, the difference between

Karatsuba and normal multiplication dominate

until overcome by the sheer size difference between

log2 (gmodq) � log2 (ghimodq). The size difference

alters the zero-one gaps because as bits of q are

guessed, ghi becomes smaller while g remains
	log2q. The size difference counteracts the effects
of Karatsuba vs. normal multiplication. Normally

the resulting zero-one gap shift happens around

multiples of 32 (224 for key 1, 191 for key 2 and

3), our machine word size. Thus, an attacker

should be aware that the zero-one gap may flip

signs when guessing bits that are around multiples

of the machine word size.
As discussed previously we can increase the size

of the neighborhood to increase jT g � T ghi j, giving
a stronger indicator. Fig. 3b shows the effects of

increasing the neighborhood size from 400 to 800

to increase the zero-one gap, resulting in a strong

enough indicator to mount a successful attack on

bits 190–220 of q in key 3.
The results of this experiment show that the fac-

torization of each key is exposed by our timing at-

tack by the zero-one gap created by the difference

when a bit of q is 0 or 1. The zero-one gap can be

increased by increasing the neighborhood size if

hard-to-guess bits are encountered.

5.4. Experiment 3—architecture and compile-time

effects

In this experiment we show how the computer

architecture and common compile-time optimiza-

tions can affect the zero-one gap in our attack. Pre-

viously, we have shown a timing attack based
upon the exponentiation and multiplication algo-

rithms. However, the exact architecture on which

decryption is performed can also change the

zero-one gap.

To show the effect of architecture on the tim-

ing attack, we begin by showing the total number

of instructions retired agrees with our algorithmic

analysis of OpenSSL�s decryption routines. An
instruction is retired when it completes and the

results are written to the destination [9]. However,

programs with similar retirement counts may

have different execution profiles due to different

run-time factors such as branch predictions, pipe-

line throughput, and the L1 and L2 cache

behavior.
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We show that minor changes in the code can

change the timing attack in two programs: ‘‘regu-

lar’’ and ‘‘extra-inst’’. Both programs time local

calls to the OpenSSL decryption routine, i.e. un-

like other programs presented ‘‘regular’’ and ‘‘ex-
tra-inst’’ are not network clients attacking a

network server. The ‘‘extra-inst’’ is identical to

‘‘regular’’ except 6 additional nop instructions in-

serted before timing decryptions. The nop�s only
change subsequent code offsets, including those

in the linked OpenSSL library.

Table 1 shows the timing attack with both pro-

grams for two bits of q. Montgomery reductions
cause a positive instruction retired difference for

bit 30, as expected. The difference between Karat-

suba and normal multiplication cause a negative

instruction retired difference for bit 32, again as ex-

pected. However, the difference T g � T ghi does not

follow the instructions retired difference. On bit 30,

there is about a 4 million extra cycles difference be-

tween the ‘‘regular’’ and ‘‘extra-inst’’ programs,
even though the instruction retired count de-

creases. For bit 32, the change is even more pro-

nounced: the zero-one gap changes sign between

the ‘‘normal’’ and ‘‘extra-inst’’ programs while

the instructions retired are similar!

Extensive profiling using Intel�s VTune [7]

shows no single cause for the timing differences.
Table 1

Timing attack with programs ‘‘regular’’ and ‘‘extra-inst’’ for

bits 30 and 32 of q

g � ghi retired T g � T ghi cycles

‘‘regular’’ bit 30 4579248

(0.009%)

6323188

(0.057%)

‘‘extra-inst’’ bit 30 7641653

(0.016%)

2392299

(0.016%)

‘‘regular’’ bit 32 �14275879
(�0.029%)

�5429545
(�0.049%)

‘‘extra-inst’’ bit 32 �13187257
(�0.027%)

1310809

(0.012%)

Bit 30 of q for both ‘‘regular’’ and ‘‘extra-inst’’ (which has a few

additional nop�s) have a positive instructions retired difference
due to Montgomery reductions. Similarly, bit 32 has a negative

instruction difference due to normal vs. Karatsuba multiplica-

tion. However, the addition of a few nop instructions in the

‘‘extra-instr’’ program changes the timing profile, most notably

for bit 32. The percentages given are the difference divided by

either the total of instructions retired or cycles as appropriate.
Additionally, modern processors such as the Pen-

tium are extremely advanced and perform on-

the-fly optimizations that depend on whole-system

runtime factors, which further complicates analy-

sis. However, two of the most prevalent factors
were the L1 and L2 cache behavior and the num-

ber of instructions speculatively executed incor-

rectly. For example, while the ‘‘regular’’ program

suffers approximately 0.139% L1 and L2 cache

misses per load from memory on average, ‘‘extra-

inst’’ has approximately 0.151% L1 and L2 cache

misses per load. Additionally, the ‘‘regular’’

program speculatively executed about 9 million
micro-operations incorrectly.

Since the timing difference detected in our at-

tack is only about 0.05% of total execution time,

we expect the run-time factors to heavily affect

the zero-one gap. However, under normal circum-

stances some zero-one gap should be present due

to the input data dependencies during decryption.

The total number of decryption queries re-
quired for a successful attack also depends upon

how OpenSSL is compiled. The compile-time opti-

mizations change both the number of instructions,

and how efficiently instructions are executed on

the hardware. To test the effects of compile-time

optimizations, we compiled OpenSSL three differ-

ent ways:

• Optimized (-O3-fomit-frame-pointer-mcpu =

pen-tium): The default OpenSSL flags for Intel.

-O3 is the optimization level, -fomit-frame-poin-

ter omits the frame pointer, thus freeing up an

extra register, and -mcpu = pentium enables

more sophisticated resource scheduling.

• No Pentium flag (-O3-fomit-frame-pointer): The

same as the above, but without -mcpu sophisti-
cated resource scheduling is not done, and an

i386 architecture is assumed.

• Unoptimized (-g): Enable debugging support.

Each different compile-time optimization chan-

ged the zero-one gap. Fig. 4 compares the results

of each test. For readability, we only show the dif-

ference T g � T ghi when bit i of q is 0 (g < q < ghi).
The case where bit i = 1 shows little variance based

upon the optimizations, and the x-axis can be used

for reference.
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Recall we expected Montgomery reductions to

dominate when guessing the first 32 bits (with a

positive zero-one gap), switching to Karatsuba
vs. normal multiplication (with a negative zero-

one gap) thereafter. Surprisingly, the unoptimized

OpenSSL is unaffected by the Karatsuba vs. nor-

mal multiplication. Another surprising difference

is the zero-one gap is more erratic when the -mcpu

flag is omitted.

In these tests we again made about 1.4 million

decryption queries. We note that in the unoptim-
ized case, separate tests allowed us to recover the

factorization with less than 359000 queries. This

number could be reduced further by dynamically

reducing the neighborhood size as bits of q are

learned. Also, our tests of OpenSSL 0.9.6 g were

similar to the results of 0.9.7, suggesting previous

versions of OpenSSL are also vulnerable.

One conclusion we draw is that users of bin-
ary crypto libraries may find it hard to charac-

terize their risk to our attack without complete

understanding of the compile-time options and

exact execution environment. Common flags

such as enabling debugging support allow our

attack to recover the factors of a 1024-bit mod-

ulus in about 1/3 million queries. We speculate

that less complex architectures will be less af-
fected by minor code changes, and have the

zero-one gap as predicted by the OpenSSL algo-

rithm analysis.
5.5. Experiment 4—source-based optimizations

Source-based optimizations can also change the

zero-one gap. RSA library developers may believe

their code is not vulnerable to the timing attack
based upon testing. However, subsequent patches

may change the code profile resulting in a timing

vulnerability. To show that minor source changes

also affect our attack, we implemented a minor

patch that improves the efficiency of the OpenSSL

0.9.7 CRT decryption check. Our patch has been

accepted for future incorporation to OpenSSL

(tracking ID 475).
After a CRT decryption, OpenSSL re-encrypts

the result (modN) and verifies the result is identi-

cal to the original ciphertext. This verification step

prevents an incorrect CRT decryption from reveal-

ing the factors of the modulus [2]. By default,

OpenSSL needlessly recalculates both Montgom-

ery parameters R and R�1modN on every decryp-

tion. Our minor patch allows OpenSSL to cache
both values between decryptions with the same

key. Our patch does not affect any other aspect

of the RSA decryption other than caching these

values. Fig. 5 shows the results of an attack both

with and without the patch.

The zero-one gap is shifted because the resulting

code will have a different execution profile, as dis-

cussed in the previous experiment. While our spe-
cific patch decreases the size of the zero-one gap,

other patches may increase the zero-one gap. This
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shows the danger of assuming a specific applica-

tion is not vulnerable due to timing attack tests,

as even a small patch can change the run-time pro-

file and either increase or decrease the zero-one

gap. Developers should instead rely upon proper
algorithmic defenses as discussed in Section 6.

5.6. Experiment 5—interprocess vs. local network

attacks

To show that local network timing attacks are

practical, we connected two computers via a 10/

100 Mb Hawking switch, and compared the results
of the attack inter-process vs. inter-network. Fig. 6

shows that the network does not seriously dimin-

ish the effectiveness of the attack. The noise from

the network is eliminated by repeated sampling,

giving a similar zero-one gap to inter-process.

We note that in our tests a zero-one gap of approx-

imately 1 millisecond is sufficient to receive a

strong indicator, enabling a successful attack.
Thus, networks with less than 1ms of variance

are vulnerable.

Inter-network attacks allow an attacker to also

take advantage of faster CPU speeds for increasing

the accuracy of timing measurements. Consider

machine 1 with a slower CPU than machine 2.

Then if machine 2 attacks machine 1, the faster

clock cycle allows for finer grained measurements
of the decryption time on machine 1. Finer grained

measurements should result in fewer queries for
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contrast our results with the attack inter-process.
the attacker, as the zero-one gap will be more

distinct.

5.7. Experiment 6—attacking SSL applications

on the local network

We show that OpenSSL applications are vul-

nerable to our attack from the network. We com-

piled Apache 1.3.27 + mod_SSL 2.8.12 and

stunnel 4.04 per the respective ‘‘INSTALL’’ files

accompanying the software. Apache + mod_SSL

is a commonly used secure web server. stunnel al-

lows TCP/IP connections to be tunneled through
SSL.

We begin by showing servers connected by a

single switch are vulnerable to our attack. This sce-

nario is relevant when the attacker has access to a

machine near the OpenSSL-based server. Fig. 7a

shows the result of attacking stunnel and

mod_SSL where the attacking client is separated

by a single switch. For reference, we also include
the results for a similar attack against the simple

RSA decryption server from the previous

experiments.

Interestingly, the zero-one gap is larger for

Apache + mod_SSL than either the simple RSA

decryption server or stunnel. As a result, success-

fully attacking Apache + mod_SSL requires fewer

queries than stunnel. Both applications have a suf-
ficiently large zero-one gap to be considered

vulnerable.

To show our timing attacks can work on larger

networks, we separated the attacking client from

the Apache + mod_SSL server by our campus

backbone. The webserver was hosted in a separate

building about a half mile away, separated by

three routers and a number of switches on the net-
work backbone. Fig. 7b shows the effectiveness of

our attack against Apache + mod_SSL on this lar-

ger LAN, contrasted with our previous experiment

where the attacking client and server are separated

by only one switch.

This experiment highlights the difficulty in

determining the minimum number of queries for

a successful attack. Even though both stunnel
and mod_SSL use the exact same OpenSSL li-

braries and use the same parameters for negotiat-

ing the SSL handshake, the run-time differences
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result in different zero-one gaps. More impor-
tantly, our attack works even when the attacking

client and application are separated by a large

network.

5.8. Experiment 7—the effects of noise

Measured decryption time may vary from true

decryption time for reasons such as network trans-
mission time variance and decryption time

variance due to processor contention. We charac-

terize the noise from such factors in three experi-

ments: an attack over a WAN, an attack over a

wireless network, and an attack against a lightly

loaded server. In this experiment we conclude that

an attack over a wireless network is impractical,

and attack over a WAN requires many more sam-
ples, and an attack against a lightly loaded server

is successful.

We measure noise by altering the attack client

to ask the server to decrypt a constant value in-

stead of iterating over guesses. Any variance in

decryption time comes from external noise. If the

decryption time range is less than the zero-one

gap, we conclude the attack will be successful, else
we will need more samples. Even without increas-

ing the sample size we may be able to guess bits of

the factor that have a larger zero-one gap than the

noise encountered.

We ask the server to decrypt a value instead of

simply measuring TCP connection times in order
to accurately reflect variance respective to the time
interval of a real attack. As before, we sample the

decryption time several times and return the med-

ian. Variance in median values reflect the noise

encountered during the attack.

The WAN experiments were conducted be-

tween Stanford and Carnegie Mellon University,

which are connected over Internet-2. In the wire-

less experiments, the server was connected via
CAT-5 to a wireless access point, while the client

was connected via a wireless D-Link PCI card.

For the server load experiments, we generated a

light artificial load that is approximately equiva-

lent to a webserver receiving about 10000 hits

per day. The light load represents an under-uti-

lized computer such as a small website or small

mail server which is authenticated over SSL.
In Table 2(Panel A), we calculate the median

decryption time with a sample size of 7. We con-

duct this experiment 16 times, and report the mean

value, the range of values encountered (maximum–

minimum value), and the standard deviation in

those 16 trials. In Table 2(Panel B) we conduct

the same experiment using a sample size of 2800.

Thus, Table 2(Panel A) reflects the noise encoun-
tered when sampling a single g, and Table 2(Panel

B) reflects the noise encountered when calculating

Tg. In both figures we include numbers for an SSL

attack over localhost for reference.

Recall that a typical zero-one gap is between

2 · 106 and 1 · 107. With a sample size of 7, the



Table 2

Decryption time using a sample size of 7 (Panel A) and 2800

(Panel B)

Avg Range Variance

Panel Aa

Localhost 12214720 221016 54832

WAN 230146795 1558514 364211

Wireless 23668769 12286696 3440170

Loaded 12496164 343048 84179

Panel Bb

Localhost 12199743 379000 154537

WAN 228474166 679212 181910

Wireless 23382657 3792336 1213838

Loaded 12383022 794156 329907

We decrypt a single value and return the median value for the

sample size. We iterate this 16 times, and report the average,

range of values (maximum–minimum), and standard deviation

of the returned decryption times. Any variance in decryption

time is due to noise.
a Corresponds to the time measurement for a single g value in

our attack. The results from the WAN and wireless indicate a

sample size of 7 is insufficient to counteract the effects of noise.

However, the loaded server attack still should work.
b Corresponds to calculating Tg or T ghi . The results indicate

that repeated sampling will eventually eliminate noise on a

WAN or a loaded server, but not for a wireless network.
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wireless experiment gives a decryption time range

of about 1.2 · 107 with a high variance. The range
and variance are not significantly lower even with

2800 samples. Thus, the noise in decryption time

measurements will likely mask the zero-one gap,

and the wireless attack will fail. We confirmed this

by unsuccessfully attempting the attack.

The WAN has a decryption time range of
1.6 · 106 with a sample size of 7. Although the

range is smaller than in a wireless setting, it is still

a significant fraction of the zero-one gap. When we

attempted the attack, we guessed only about 30%

of the bits correctly. (Interestingly, when the server

was compiled without optimizations as in section

5.4, we could guess 98% of the factor using the

same parameters.)
The loaded server numbers in Table 2(Panel B)

indicate more noise than on the WAN. However,

we could correctly guess about 77% of the factor

correctly on the loaded server. The reason our at-

tack is more successful against a loaded server is

the number of measurements affected by noise is

smaller with load than with distance. This is indi-
cated in Table 2(Panel A), where the decryption

time range for a loaded server is very close to the

localhost measurement. Noise from server load

will generally affect a few decryptions since only

a few decryption requests will have processor con-
tention. However, the noise from the network will

affect every decryption. Thus, the resulting mea-

surement Tg an T ghi on a WAN will be noisier than

against a loaded server, since noise effects more

time measurements.

Another limiting factor in a WAN attack is the

total attack time. With our default parameters

using a sample size of 7 and a neighborhood size
of 400, each bit took 484 s to guess. Thus, the total

attack takes about 40 hours. Even with speed-of-

light transmission and no decryption time latency,

the attack would take 11 hours! Instability in the

network (or detection of the attack!) is much more

likely over such a large time interval. Others have

shown that if the distribution of the network noise

is known, a timing attack may be possible in
certain circumstances [4].
6. Defenses

We discuss three possible defenses. The most

widely accepted defense against timing attacks is

to perform RSA blinding. The RSA blinding oper-
ation calculates x = regmodN before decryption,

where r is random, e is the RSA encryption expo-

nent, and g is the ciphertext to be decrypted. x is

then decrypted as normal, followed by division

by r, i.e. xe/rmodN. Since r is random, x is random

and timing the decryption should not reveal infor-

mation about the key. Note that r should be a new

random number for every decryption. According
to [18] the performance penalty is 2–10%, depend-

ing upon implementation. Netscape/Mozilla�s NSS
library uses blinding. Blinding is available in

OpenSSL, but not enabled by default in versions

prior to 0.9.7b. Fig. 8 shows that blinding in

OpenSSL 0.9.7b defeats our attack. We hope this

paper demonstrates the necessity of enabling this

defense.
Two other possible defenses are suggested of-

ten, but are a second choice to blinding. The first

is to try and make all RSA decryptions not depen-
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dent upon the input ciphertext. In OpenSSL one

would use only one multiplication routine and al-

ways carry out the extra reduction in Montgom-

ery�s algorithm, as proposed by Schindler in [19].
If an extra reduction is not needed, we carry out
a ‘‘dummy’’ extra reduction and do not use the re-

sult. Karatsuba multiplication can always be used

by calculating c modpi*2
m, where c is the cipher-

text, pi is one of the RSA factors, and m =

log2pi � log2 (cmodpi). After decryption, the re-

sult is divided by 2mdmodq to yield the plaintext.

We believe it is hard to create and maintain code

where the decryption time is not dependent upon
the ciphertext. For example, since the result is

never used from a dummy extra reduction during

Montgomery reductions, it may inadvertently be

optimized away by the compiler.

Another alternative is to require all RSA com-

putations to be quantized, i.e. always take a multi-

ple of some predefined time quantum. Matt Blaze�s
quantize library [1] is an example of this approach.
Note that all decryptions must take the maximum

time of any decryption, otherwise, timing informa-

tion can still be used to leak information about the

secret key. Thus this approach is inefficient.

Currently, the preferred method for protecting

against timing attacks is to use RSA blinding.

The immediate drawbacks to this solution is that

a good source of randomness is needed to prevent
attacks on the blinding factor, as well as the small

performance degradation. In OpenSSL, neither

drawback appears to be a significant problem.
7. Conclusion

We devised and implemented a timing attack

against OpenSSL—a library commonly used in

web servers and other SSL applications. Our
experiments show that, counter to current belief,

the timing attack is effective when carried out be-

tween machines separated by multiple routers.

Similarly, the timing attack is effective between

two processes on the same machine and two Vir-

tual Machines on the same computer. As a result

of this work, several crypto libraries, including

OpenSSL, now implement blinding by default as
described in the previous section.
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