
Proving the TLS Handshake Secure (As It Is)

Karthikeyan Bhargavan1, Cédric Fournet2, Markulf Kohlweiss2,
Alfredo Pironti1, Pierre-Yves Strub3, and Santiago Zanella-Béguelin1,2

1 INRIA, Paris, France
{firstname.name}@inria.fr

2 Microsoft Research, Cambridge, UK
{fournet,markulf}@microsoft.com

3 IMDEA Software Institute, Madrid, Spain
pierre-yves@strub.nu

Abstract. The TLS Internet Standard features a mixed bag of crypto-
graphic algorithms and constructions, letting clients and servers negoti-
ate their use for each run of the handshake. Although many ciphersuites
are now well-understood in isolation, their composition remains prob-
lematic, and yet it is critical to obtain practical security guarantees for
TLS, as all mainstream implementations support multiple related runs
of the handshake and share keys between algorithms.

We study the provable security of the TLS handshake, as it is imple-
mented and deployed. To capture the details of the standard and its main
extensions, we rely on miTLS, a verified reference implementation of the
protocol. We propose new agile security definitions and assumptions for
the signatures, key encapsulation mechanisms (KEM), and key deriva-
tion algorithms used by the TLS handshake. To validate our model of key
encapsulation, we prove that both RSA and Diffie-Hellman ciphersuites
satisfy our definition for the KEM. In particular, we formalize the use
of PKCS#1v1.5 and build a 3,000-line EasyCrypt proof of the security
of the resulting KEM against replayable chosen-ciphertext attacks under
the assumption that ciphertexts are hard to re-randomize.

Based on our new agile definitions, we construct a modular proof
of security for the miTLS reference implementation of the handshake,
including ciphersuite negotiation, key exchange, renegotiation, and re-
sumption, treated as a detailed 3,600-line executable model. We present
our main definitions, constructions, and proofs for an abstract model of
the protocol, featuring series of related runs of the handshake with dif-
ferent ciphersuites. We also describe its refinement to account for the
whole reference implementation, based on automated verification tools.

1 Introduction

TLS is the most widely deployed protocol for securing communications and yet,
after two decades of attacks, patches and extensions, its practical security re-
mains unresolved. One of the most troublesome aspects of the protocol is its
handling of a large number of cryptographic algorithms and constructions. New

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part II, LNCS 8617, pp. 235–255, 2014.
© International Association for Cryptologic Research 2014

236 K. Bhargavan et al.

extensions are added to the protocol and its implementations, while older fea-
tures remain for backward compatibility. Thus, TLS clients and servers offer
many choices, and each run of the handshake involves a negotiation of the best
protocol version, ciphersuite, and extensions available at both ends. Such a trade-
off between flexibility and security creates several problems:

(1) It makes the security of TLS depend on its correct configuration, inasmuch
as some versions (e.g. SSL2) and algorithms (e.g. MD5 and RC4) are much
weaker than others, and may also suffer from different implementation flaws.
In theory, only very restrictive configurations have been proved secure. In
practice, dangerous mis-configurations of TLS are commonplace.

(2) It complicates the protocol logic, as the integrity of the negotiation itself re-
lies on algorithms being negotiated; this is a persistent source of attacks, from
protocol regression in SSL2 [27] to version fallback in current browsers [18].

(3) It demands stronger security assumptions, to reflect the fact that honest par-
ties may use the same key materials with different algorithms. Intuitively,
TLS on its own enables a range of chosen-protocol attacks whereby a weak
algorithm (chosen by the attacker) may compromise the security of stronger
algorithms (chosen by honest parties). We detail below several constructions
of TLS that demand joint assumptions on collections of algorithms. Sur-
prisingly, prior work on the provable security of TLS failed to make this
observation or left it implicit.

Besides interference between multiple algorithms, TLS features dependencies
between multiple runs of the handshake. For instance, a client connection may
first run an RSA-based session to establish a master secret and keys for the
record layer, then run a second session on the same connection, possibly with
different algorithms and certificates. Using a parallel connection, the client may
run a third resumption handshake, re-using the master secret of a prior session to
derive new keys. At that point, the security of those keys depends on algorithms
and constructions used in three runs of the handshake. (See for instance [5] for
recent attacks involving three related handshakes.) This is in sharp contrast with
prior work on the provable security of TLS [13, 16, 17], which focus on a fixed
run of the protocol, for a fixed choice of algorithms.

1.1 Cryptographic Agility

Agile security considers families of schemes or protocols, all serving the same
purpose, when the same keys are shared across members of the family. Acar
et al. [1] propose agile definitions for pseudo-random functions (PRF) and en-
cryption schemes, and advocate agility as a major practical concern for protocols
like TLS. Instead, combined, or joint security [12] studies the sharing of keys be-
tween constructions serving different purposes, e.g. encryption and signing. TLS
requires both agile and joint security; in the remainder we let the term agility
encompass both concepts.

The agility mechanisms of TLS ares primarily driven by ciphersuites of the
form TLS e s WITH r, which indicates a key encapsulation mechanism (KEM) e

Proving the TLS Handshake Secure (As It Is) 237

and signature scheme s for the handshake, and an authenticated encryption
scheme r for the record layer. For instance, the commonly-used ciphersuite TLS
RSA WITH AES 256 CBC SHA indicates an RSA handshake: the client sends a fresh
premaster secret encrypted under the server public key; both parties use it to
extract a master secret, used in turn as the seed of a SHA1-based PRF to derive
4 keys for SHA1-based MACs and AES encryption in CBC mode. TLS 1.2 cur-
rently has 314 registered ciphersuites. More precisely, the choice of algorithms
depends on additional data exchanged during the handshake (hence subject
to active attacks), including protocol versions, certificate requests, certificate
chains, and various extensions in the first two messages of the handshake (e.g.
for choosing hash functions and elliptic curves). Still, because of key reuse across
algorithms, we stress that the security of TLS does not reduce to the security of
a few thousand fixed-algorithm variants of the handshake.

1.2 Empirical Study of Web Servers and Browsers

Using an online analyzer [24], we gathered extended information on server
configurations for 215 of the top 500 domains,1 including the TLS versions,
ciphersuites, certificates, and extensions they offer. These servers accept 64 ci-
phersuites, with an average of 12 and standard deviation of 6. They still widely
deploy weak algorithms: 70% accept at least one ciphersuite with MD5 and 90%
at least one with RC4. All servers but one offer several versions; 37% offer only
SSL3 and TLS 1.0; 56% offer all 4 versions from SSL3 to TLS 1.2. Although now
forbidden by the standard, 3% still accept SSL2.

We also tested 12 TLS clients, including major web browsers (Chrome, Fire-
fox, Internet Explorer, Safari) and libraries (NSS, OpenSSL, SChannel, Secure
Transport). These clients similarly propose a large number of ciphersuites, rang-
ing from 19 to 36; they all propose weak hash (MD5) or encryption methods
(RC4, or even no encryption).

1.3 Cross-Ciphersuite Attacks

As a first example, most TLS servers are configured to use the same RSA certifi-
cate both for signing handshake messages and for decrypting premaster secrets.
Experimentally, 69% of the servers we tested propose at least one ciphersuite
using RSA for encryption and one using it for signing, and all 138 of those use
the same key for both purposes.

As a second example, Mavrogiannopoulos et al. [20] report a cross-protocol
attack between plain Diffie-Hellman (DH) and Elliptic-Curve Diffie-Hellman
(ECDH) ciphersuites, due to a mis-interpretation of the signed group description
sent by the server. Each family of ciphersuites is (a priori) secure in isolation,
but configurations enabling a DH client and an ECDH server are subject to their
attack.

1 http://www.alexa.com/topsites/global, as of January 2014, excluding domains
with no valid HTTPS certificate.

http://www.alexa.com/topsites/global

238 K. Bhargavan et al.

Our third example concerns the record algorithms (the r in TLS e s WITH r).
Recall that both parties derive keys for r immediately after the KEM phase,
and start using them before verifying the Finished messages that confirm the
integrity of the handshake. As an optimization, the optional False Start TLS
extension [19] lets clients send private application data before key confirmation.
Depending on r, the same key materials are split into IVs, MAC keys, and
encryption keys of various lengths. Hence, the client and the server may start
using the same bits with different algorithms rC and rS , for instance as an IV at
the client and as a MAC key at the server. To our knowledge, we are the first to
report this cross-algorithm attack against [19]. We do not have an exploit based
on two standard record algorithms (rC , rS) but one can easily design a pair of
schemes strong in isolation and subject to the attack, and key recovery attacks
against any standard algorithm rC could be used to attack strong rS algorithms.

1.4 Multiple Sessions and Connections

Following the standard, we recall TLS terminology for multiple related hand-
shakes; this differs from the key-exchange model of Bellare & Rogaway [3] with
only one kind of sessions and no shared state between sessions. Local instances
of the protocol provide a connection (concretely, taking ownership of a TCP con-
nection), either as client or as server. Each connection goes through a sequence
of epochs, each epoch running one handshake. For a given connection, we refer
to additional handshakes in the sequence as renegotiations. We refer to epochs
performing full handshakes as sessions, and to epochs performing abbreviated
handshakes as resumptions. We have a transition from the current epoch to the
next each time a handshake completes by successfully processing the last mes-
sage of the handshake. Abstractly, the local instance never stops; it is then ready
to send (or receive) the first message of the next handshake.

Sessions intend to establish a fresh master secret, associated with data ex-
tracted from the handshake messages that record its origin and purpose, and
used to derive fresh keys for the record layer. Resumptions instead rely on a
prior complete session to save the cost of public-key cryptography and directly
derive fresh keys using the algorithms and master secret of the original session.
For each epoch, the handshake consists of a series of messages exchanged us-
ing the current record-layer protection mechanisms, initially in the clear, then
typically using authenticated encryption.

1.5 Proving the TLS Handshake Secure

The scope of this paper is the TLS handshake, as it is specified in the Internet
Standard and (to a lesser extent) as it is commonly used. We model multiple,
related sessions and connections, and the agility issues caused by multiple ci-
phersuites featuring RSA and DHE key exchanges. We also model unilateral
and mutual authentication, based on RSA and (EC)DSA signatures. On the
other hand, we do not cover static DH, PSK, and ECDHE key exchanges, and

Proving the TLS Handshake Secure (As It Is) 239

we do not investigate the joint usage of keys for signing and encryption. (See the
full paper for their discussion.)

Our main result is provable security for a standard-compliant, reference im-
plementation of the handshake, seen as a detailed cryptographic model of the
protocol. Our provably-secure handshake code consists of 3,600 lines of F#. Its
security relies on new agile assumptions, notably for its KEMs. We reduce them
to lower-level assumptions on RSA encryption and Diffie-Hellman exchange, us-
ing a 3,000-lineEasyCrypt [2] proof. Working with a reference implementation,
and testing it against mainstream implementations, forces us to handle the de-
tails of multiple handshakes and algorithms. Proving it secure requires both
modularity and automation.

A feature of TLS that traditionally resists abstraction is that the handshake
releases algorithms and derived keys to the record layer before the handshake
completes, so that its last messages can be exchanged as TLS fragments protected
by the new keys. We revisit the cryptographic folklore that the handshake can
only be proved secure by including these encrypted messages. The kernel of the
lore is that it cannot be proved using a Bellare & Rogaway-style key-exchange
definition. To achieve modularity, we separate record-key generation from hand-
shake completion: our main definition releases the record keys in the middle of
the handshake, before signaling its completion a few messages later. Since the
handshake does not rely on record-layer protection, we can safely let the hand-
shake adversary control both the network and the record layer. Completion is
still necessary to confirm that the record keys are secure before encrypting any
application data—but not for encrypting handshake Finished messages.

We stress that this paper establishes the security of the handshake, seen as a
component of TLS, not the full communications protocol. Our main construc-
tion provides key indistinguishability, and ensures agreement on parameters for
the record layer. Our results complement those of Bhargavan et al. [4], who de-
scribe miTLS, an implementation of TLS verified in the computational model
of cryptography; they focus on the main TLS API and application security, but
rely on stronger, ad hoc assumptions for RSA and Diffie-Hellman ciphersuites.
Our handshake is integrated with miTLS, which provides additional definitions
and verified code for the record layer and the protocol logic. (Their security
model ensures in particular that the record keys are used for protecting applica-
tion data only after handshake completion [4].) By composing our results with
theirs, we obtain security for a reference implementation of the TLS standard
and the sample applications built and verified on top of miTLS.

1.6 Overview of the Paper

We see the use of a verified reference implementation and automated tools as es-
sential to precisely account for multiple related epochs and algorithms in TLS; §6
briefly describes our use of high-level programming, type systems, and provers to
carry outmodular cryptographic verification at this scale.Topresent our result and
explain its proof structure, however, we rely on more succinct definitions and con-
structions, given in §2–5 and outlined below. Thismore abstract treatment suffices

240 K. Bhargavan et al.

to convey the main ideas, but it necessarily omits many aspects of the handshake,
such as its message formats.We refer to the standard [9] or the implementation for
the details. Also, for simplicity, we do not model forward secrecy and state reveal
e.g. for master secrets, and we consider only static compromise for long-term keys.

Signatures (§2) and Certificates. We begin with a relatively simple agile def-
inition. TLS supports three core signature algorithms, s ∈ {RSA,DSA,ECDSA},
used with a range of algorithms h to hash the text before signing. The hash al-
gorithm depends on protocol versions, ciphersuites and extensions. TLS does
not enforce any key-based hash algorithm policy, so we need a notion of security
that tolerates some weak algorithms in the standard. For instance, a verifier
tricked into using MD5 may remain secure, provided the signer only uses SHA1,
and vice-versa. For each core algorithm s, we define h∗-H-security against an
adversary that must forge a valid signature for algorithms (s, h∗), given access
to signing oracles for any algorithms (s, h) with h ∈ H . We show that a family of
secure schemes may not be jointly secure, but we leave open its concrete analysis
for the range of algorithms used in TLS.

Our model excludes any validation rules for certificates and their PKI, an
important problem outside the scope of the TLS standard. Our constructions
simply authenticate the exchanged certificate chains, and use a specification
function to extract from them the public keys used in the handshake.

Master Secrets, Key Encapsulation, and Key Derivation (§3). Following
Krawczyk et al. [17], we use KEMs [8] to model key-exchange; this allows us to
unify RSA and Diffie-Hellman within the same formalism. Instead of treating the
whole handshake as a KEM, however, following Morrissey et al. [21], we decom-
pose it into premaster secret, master secret, and record-key derivation phases;
this yields the modularity we need e.g. for modeling the re-use of master secrets
between handshakes. We show how to securely construct a master secret KEM
from a premaster secret KEM for RSA and Diffie-Hellman ciphersuites (The-
orem 1) and, independently, how to derive record keys and Finished messages
from master secrets (see the full paper). We formalize the proof of Theorem 1
in EasyCrypt. For RSA, this involves showing that countermeasures to Ble-
ichenbacher’s attacks [6, 15] provide enough protection against chosen-ciphertext
attacks. We rely on the assumption that PKCS#1v1.5 ciphertexts are hard to
re-randomize; we leave open the problem of further reducing this conjecture to
standard RSA assumptions. Our result does not directly compare to the one of
Krawczyk et al. as their KEM also includes key derivation and Finished mes-
sages, whereas we rely on this new assumption. To comply with the standard,
we also support agility in the algorithm used to extract master secrets from a
premaster secrets. As for agile signatures, we arrive at a definition parameterized
by an algorithm for the encryptor and a set of algorithms for the decryptor.

Once established, the master secret is used to key a pseudo-random function
(PRF) for multiple epochs for two purposes: (1) to derive the record-layer key
materials for the epoch; and (2) to compute the MACs of all messages exchanged
in an epoch to verify its integrity. Our corresponding security definition (in the

Proving the TLS Handshake Secure (As It Is) 241

full paper) requires that adversaries commit to a record-layer algorithm r before
key derivation. This let us support the negotiation of r without having to make
agile assumptions for the record layer, as discussed in §1.3.

Agile Security Model (§4) and Proof (§5) for Sequences of Hand-
shakes. The main two goals of the handshake are to establish shared keys for
the record layer, and to agree on many parameters, including those used in the
handshake itself. To this end, we propose a new security definition that covers
multiple epochs on different connections, related by resumptions and renegotia-
tions. We equip our adversary (informally including the rest of TLS, the applica-
tion, and the network) with oracles to create honest connections and long-term
keys for clients and servers, to control their usage, and to exchange handshake
messages. Each honest instance of the protocol represents a connection, and logs
a sequence of local assignments, recording its view on the successive epochs of
the connection. This enables us to capture TLS assignments in a generic manner.
Our main integrity result is that, when a handshake completes, and under suit-
able conditions on algorithms and keys, honest clients and servers agree on all
assignments for all epochs on the connection. More explicitly, for new sessions,
both parties agree on a unique label; the negotiation algorithms, parameters,
and key-exchange values; and the optional certificate chains for the client and
the server. For resumptions, both parties agree on the label of the session being
resumed, as well as a fresh unique label for key derivation.

We also provide secure key derivation, depending on distinguished exchange-
value assignments for each ciphersuite. They are somewhat similar to session
identifiers in Bellare-Rogaway models but are used to define both safety, akin
to freshness, and partnering. A session is safe when honest client and server
agree on these assignments, under suitable conditions on algorithms and long-
term keys. As discussed above, our definition immediately releases all connection
keys. We guarantee that the keys of safe sessions are indistinguishable from fresh
random keys; this accounts for selective session key reveal and test queries in
Bellare-Rogaway models. Additionally, we provide verified safety, that is, suffi-
cient conditions on the recorded long-term keys that enable honest parties to
infer that their session is safe.

Our main result (§5, Theorem 2) reduces the concrete security of the TLS
handshake to agile assumptions on the constructions used for signatures, KEMs,
and PRFs. Each epoch assigns a distinguished agility-parameter a, selecting all
algorithms for the epoch. The theorem statement is parameterized by a predicate
α on a that holds whenever all algorithms selected by a are (assumed to be)
secure. Thus, it provides meaningful security only for epochs where α(a) holds,
despite any other epochs. If α is always false, there is nothing to prove. If we care
specifically about one ciphersuite, say TLS DHE DSS WITH 3DES EDE CBC SHA, we
may apply our theorem with α set to true only when a selects that ciphersuite.
This already improves on non-agile results for TLS that assume all honest parties
agree in advance on a ciphersuite and reject any others.

Our model accounts for agility with respect to record algorithms, and yields
channel security for miTLS without agile assumptions on the algorithms r used

242 K. Bhargavan et al.

in the record layer. We thus validate the use of stateful LHAE [23] for clients
and servers that negotiate r. We require, however, that no application data be
sent before the Finished messages are verified. For implementations that violate
this requirement [19], stronger agile assumptions seem unavoidable.

Code-Based Verified Implementation (§6). We finally present the reference
implementation of the handshake we integrated into miTLS, and its verification
against our security definition, based on the same modular proof structure but
at a greater level of detail, relying on type-based verification for scalability. Our
code supports the standard and commonly-used extensions; we tested it against
various mainstream TLS clients and servers, using 4 versions ranging from SSL3
to TLS 1.2, 12 ciphersuites, and various subsets of extensions. It improves on
the original miTLS code [4], which supported less features, and whose security
relied on monolithic, TLS-specific assumptions for RSA and DH ciphersuites.
The full paper reports experimental results showing that our code runs hand-
shakes with reasonable performance. To enable its automated verification, our
code is structured into small, independent modules (that is, program libraries)
parameterized by algorithm descriptors. For instance, our library code for the
HMAC-based PRF used in TLS implements agility before calling selected core
algorithms, e.g. SHA1. In contrast, the code that implements SHA1 is outside the
scope of our verification effort—we document our agile cryptographic assump-
tion on it, and call a standard library. Each cryptographic construction used
in the handshake corresponds to a separate library in the code. We define the
security of libraries for multiple keys and multiple algorithms; the corresponding
definitions and reductions to single-key security of individual algorithms appear
in the full paper.

In summary, our work sheds light on important design and implementation
issues of TLS. To our knowledge, we provide the first provable-security results for
TLS that account for algorithm agility. We are also the first to give an abstract
security model for handshakes related by resumption and renegotiation.

Further Reading. Our website http://www.mitls.org provides additional
materials: the miTLS source code; the EasyCrypt proof of Theorem 1; and
a companion paper with empirical data on TLS handshakes, auxiliary defini-
tions, constructions, and proofs, and extended discussions of attacks and related
work.

2 Agile Signatures

An agile signature scheme consists of three algorithms: KeyGen is a standard key
generation algorithm, while Sign and Verify take an extra agility parameter. For
instance, given a core signature scheme s = (keygen, sign, verify), the hash-then-
sign scheme Ss = (KeyGen, Sign,Verify) of TLS is defined as follows: KeyGen

�
=

keygen generates a key pair for algorithm s; Sign(h, sk,m)
�
= sign(sk, h(m)) com-

putes a signature using the core scheme s and hash algorithm h; and Verify(h,
pk,m, σ)

�
= verify(pk, h(m), σ) verifies a purported signature σ for message m

http://www.mitls.org

Proving the TLS Handshake Secure (As It Is) 243

hashed with algorithm h. We define existential unforgeability under chosen-
message attacks (EUF-CMA) for agile signatures.

Definition 1 (EUF-CMA). Let (KeyGen, Sign,Verify) be an agile signature
scheme, p� a parameter, and P a set of parameters, and consider the following
forgery game:

Game EUF
�
=

pk, sk ← KeyGen(); M := ∅

m ′, σ ← ASIGN(pk)
return m ′ /∈ M ∧ Verify(p�, pk,m ′, σ)

Oracle SIGN(p,m)
�
=

if p /∈ P then return ⊥
M := M ∪ {m}
return Sign(p, sk,m)

The scheme is (ε, t, p�, P)-secure against EUF-CMA if, for any A that runs in
time t, the EUF game returns true with probability at most ε.

This definition generalizes plain EUF-CMA security; the two coincide for a
scheme with fixed hash algorithm h, i.e. (p�, P) = (h, {h}). We do not require
p� ∈ P ; for instance, one may pragmatically assume that forging an MD5-
based signature is hard when given only SHA1-based signatures. Indeed, the
attacks of Stevens et al. [26] rule out (MD5, {MD5, . . .})-security, but (MD5,
{SHA1})-security may still hold. On the other hand, non-agile security does
not imply agile security. Consider for instance the scenario where the pre-image
security of MD5 is broken. Then the attacks described by Naccache and Shpar-
linski [22] are likely to break (SHA256, {MD5, SHA256})-security, even though
(SHA256, {SHA256})-security would still hold.

The TLS standard features the following hash-then-sign schemes: prior to ver-
sion 1.2, RSA PKCS#1v1.5 signatures use the concatenation of MD5 and SHA1
hashes and (EC)DSA signatures use SHA1. TLS 1.2 introduces additional agility
to facilitate migration from MD5 and SHA1 to stronger algorithms. Designers
are aware of agility problems, and prescribe ad hoc countermeasures [9, §7.4.3].
The standard still requires that (EC)DSA use SHA1, delaying the migration to
stronger algorithms. It also adds an encoding of the hash algorithm identifier to
guarantee that all hash algorithms have disjoint range.

Given algorithms h and h′ with disjoint ranges, if the core signature scheme it-
self is (ε, t)-EUF-CMA secure on their joint range, then we have (ε′, t′, h, {h, h′})-
security for the corresponding agile hash-then-sign signature scheme, where the
difference between ε, t and ε′, t′ depends on the reduction to the collision resis-
tance of h. Sadly, the core signature schemes used in TLS are not EUF-CMA
secure. The best we can do, for now, is thus to assume that the hash-then-sign
signature scheme that uses them meets Definition 1.

3 Master Secrets and Key Encapsulation

Following [14, 17], we model the basic key-exchange functionality of TLS as dif-
ferent variations on KEMs. However, we separate the derivation of the master se-
cret from the derivation of keys for the record-layer. We model the premaster se-
cret phase for RSA and Diffie-Hellman exchanges as agile KEMs (keygen, !enc,dec)
parameterized by a 2-byte protocol version string.

244 K. Bhargavan et al.

RSA. keygen generates a fresh RSA key pair (pk, sk); enc(pv, pk) appends a
randomly chosen 46-byte string to pv to obtain the premaster secret pms, and
returns it with the ciphertext c resulting from its PKCS#1v1.5 encryption un-
der pk; dec(pv, sk, c) decrypts c with sk. If the padding is correct and the de-
crypted pms is exactly 48 bytes long, it returns pms with the first 2 bytes replaced
by pv, otherwise it returns ⊥; such errors are handled in our ms-KEM below.

Diffie-Hellman. keygen selects group parameters pp, generates a fresh pair of
DH values (gx, x), and returns pk = (pp, gx) and sk = (pk, x) as public and
private KEM keys; enc(pv, (pp, gx)) samples y and returns pms = gxy and c = gy;
dec(pv, (pk, x), c) returns cx = gxy. The ciphertext space guarantees that c is in
a large prime-order subgroup specified by pk. In contrast to the RSA pms-KEM,
neither enc nor dec depend on pv.

On their own, these two premaster secret KEMs are not secure under any
indistinguishability notion, even under relatively weak active attacks such as,
for instance, plaintext-checking attacks (PCA): recall the Bleichenbacher attack,
and the lack of active security for basic Diffie-Hellman (e.g., querying a plaintext-
checking oracle on cr and pmsr for any r �= 1, suffices to distinguish a random
pms from the one encapsulated in c). Rather than using pms as a key, TLS
feeds it through an agile key extraction function (KEF) parameterized by a hash
algorithm, to compute the master secret ms.

We model this phase of the handshake as an agile labeled KEM, extending the
labeled KEMs of [14, 17] with an agility parameter. Given an agile (unlabeled)
pms-KEM e = (keygen, enc, dec) and an agile key extraction function family KEF,
the master secret KEM Ee = (KeyGen,Enc,Dec) of TLS is defined as follows:

– KeyGen()
�
= keygen();

– Enc(pv, h, pk, �)
�
= pms, c ← enc(pv, pk); ms ← KEF(pv, h, pms, �);

return ms, c
generates a premaster secret pms and a ciphertext c using e, then derives a
master secret ms for � using KEF.

– Dec(pv, h, sk, �, c)
�
= pms ← dec(pv, sk, c); if pms = ⊥ then pms ← pv‖$;

return KEF(pv, h, pms, �)
decrypts the ciphertext c to obtain pms. If decryption fails, it computes a
fake pms by appending a random 46-byte string to pv (this is never the case
for DH). It returns the value obtained from pms and � using the agile KEF.

We assume sufficient checks to ensure that all arguments are well-formed before
calling the master secret KEM algorithms; e.g., for Diffie-Hellman, our code
validates group parameters and checks that pk and c belong to a large prime-
order subgroup before calling Dec.

We define security for agile labeled KEMs as indistinguishability under re-
playable chosen-ciphertext attacks (IND-RCCA), a relaxation of CCA security,
first introduced for public-key encryption by Canetti et al. [7].

Proving the TLS Handshake Secure (As It Is) 245

Definition 2 (IND-RCCA). Let (KeyGen,Enc,Dec) be an agile labeled KEM,
p� a parameter, P a set of parameters; and consider the following game:

Game RCCA
�
=

pk, sk ← KeyGen()
K,L := ∅

b ← {0, 1}
b′ ← AENC,DEC(pk)
return (b′ = b)

Oracle ENC(�)
�
=

if � ∈ L then return ⊥
k0, c ← Enc(p�, pk, �)
k1 ← $
K(�) := K(�) ∪ {k0, k1}
return kb, c

Oracle DEC(p, �, c)
�
=

if � ∈ L ∨ p /∈ P then return ⊥
L := L ∪ {�}
k ← Dec(p, sk, �, c)
if k ∈ K(�) then return ⊥
return k

The RCCA advantage of A, AdvRCCA
p�, P (A) is defined as 2 Pr[RCCA : b′ = b]− 1.

The scheme is (ε, t, p�, P)-secure against IND-RCCA-n when the advantage of
any adversary A running in time t and making at most n queries to ENC is at
most ε. We write IND-RCCA instead of IND-RCCA-1.

The check � ∈ L in the decryption oracle reflects a property of TLS: honest
servers decrypt at most once for each nonce. The check � ∈ L in the encryption
oracle is analogous to the restriction of Krawczyk et al. [17] to define IND-CCCA
security for non-agile KEMs.

The lemma below (proved by a standard hybrid argument in the full paper)
enables us to prove security for a single query, then use the multi-query variant
for reasoning about TLS in our main theorem.

Lemma 1. If a KEM (KeyGen,Enc,Dec) is (ε/n, t′, p�, P)-secure against IND-
RCCA, then it is (ε, t, p�, P)-secure against IND-RCCA-n, where t′ = t+O(n ·
tEnc) and tEnc is the worst-case cost of algorithm Enc.

Next, we define the assumptions for our main theorem on the TLS master
secret KEM: non-randomizability under plaintext-checking attacks (NR-PCA)
and one-wayness under plaintext-checking attacks (OW-PCA).

Definition 3 (NR-PCA, OW-PCA). Let (keygen, enc, dec) be an agile (un-
labeled) KEM, p� a parameter, and P a set of parameters. Consider the two
games:

Game OW-PCA
�
=

pk, sk ← keygen()
k�, c� ← enc(p�, pk)
k ← APCO(pk, c�)
return (k = k�)

Game NR-PCA
�
=

pk, sk ← keygen()
k�, c� ← enc(p�, pk)
c ← APCO(pk, c�)
return (c �= c� ∧ k� = dec(p�, sk, c))

Oracle PCO(p, k, c)
�
=

if p /∈ P ∨ k = ⊥ then
return ⊥

k′ ← Dec(p, sk, c)
return (k′ = k)

The NR-PCA advantage of A, AdvNR-PCA
p�, P (A) is the probability that the NR-PCA

game returns true. The KEM is (ε, t, p�, P)-secure against NR-PCA if the ad-
vantage of any adversary A running in time t is at most ε. OW-PCA advantage
and security are defined analogously.

The full paper gives preliminary theorems and conjectures on these assump-
tions, and relates our agile IND-RCCA KEMs to prior work and more standard
assumptions. We hope this will stimulate further cryptanalytic work on TLS.

246 K. Bhargavan et al.

Our main result on KEMs is that the generic ms-KEM Ee of TLS is IND-
RCCA secure if the underlying pms-KEM e is both NR-PCA and OW-PCA
secure. The proof (in the full paper) has been formalized using EasyCrypt.
The proof is in the random oracle model for the agile KEF. As explained above,
we consider the single challenge case.

Theorem 1 (RCCA from NR-PCA and OW-PCA). Let A be a (p�, P)-
RCCA adversary for Ee running in time tA and making at most qKEF and qDEC

queries to the random and decryption oracle, respectively. Let p� = (pv�, h�) and
P ′ �

= {pv | (pv, h) ∈ P}. There exist an OW-PCA adversary B and an NR-PCA
adversary C against e, both running in time tA +O(qDEC · qKEF), such that

AdvRCCA
p�, P (A) ≤ 2

(
AdvNR-PCA

pv�, P ′ (B) +AdvOW-PCA
pv�, P ′ (C) + 2|pv|−|pms| (qKEF + qDEC)

)
.

The factor 2|pv|−|pms| is the entropy of the value pv‖$ used to derive the mas-
ter secret when RSA decryption fails, as recommended by TLS 1.2 to mitigate
Bleichenbacher attacks. With the DH pms-KEM, decryption never fails (as the
ciphertext validation is done beforehand) so the last term above can be omitted.

4 Defining Agile Security for Sequences of Handshakes

Our security definition for handshakes is general enough to apply to TLS, as
specified in the standard and coded in miTLS, while hiding implementation
details like message formats and specific cryptographic constructions. The ad-
versary creates and interacts with multiple instances i of a handshake protocolΠ
by calling Π ’s oracles, detailed below. Each instance has a fixed role R, either
C for Client or S for Server, and models a connection endpoint.

– KeyGen(v) creates and stores a new honest keypair for the long-term public-
key algorithm v (in TLS, ranging over s for signing and e for key encapsu-
lation) and returns the associated public key. Similarly, KeyInject(v, pk, sk)
stores a dishonest keypair (assuming pk is not yet in the store).

– Init(R, cfgR) creates an instance with role R and local configuration cfgR; it
returns a fresh handle i.

– Sendi(frag) lets an existing instance i process a fragment, depending on its
current state. As a result, the instance may update its state, assign local
variables, and return a response. (In TLS, responses range over sequences of
handshake and CCS message fragments, intended to be sent to the peer, as
well as error messages.)

– Controli(env) changes the global, internal state of the handshake, e.g., en-
abling the adversary to control access to stored sessions and private keys by
the protocol the next time Send will be called, or to trigger a renegotiation
request. This single oracle accounts for many control functions in the miTLS
handshake implementation. For example, Control provides the environment
with means to reject certificates that it deems invalid.

Proving the TLS Handshake Secure (As It Is) 247

Each instance maintains its private local state (e.g. using local variables). Each
instance can go through a sequence of epochs (e.g. recording the number of
cycles in the state machine). For each epoch, it records a sequence of variable
assignments, extended as the result of calls to Send and Control. Each variable is
assigned at most once in every epoch. The selection and ordering of assignments
within an epoch depends on the protocol; for instance, a client epoch may assign
its client-certificate variable, then send a message to the server, causing the
server epoch to record the same assignment later in the protocol.

Our definition is based on local variable assignments, which summarize the
view of clients and servers so far about each epoch. This is adequate to model
the handshake as a component within TLS, but this differs from models based
on matching conversations [3] that compare the (unparsed) messages they have
sent and received so far. We use assignments to express the main goals of the
protocol, for instance assigning a fresh random value to the record key variable k;
and agreeing on all assignments as a session completes. We list below the main
variables used in our presentation, but our definition can account for a more
detailed model of the TLS handshake.

� epoch identifier; in TLS, the concatenation of the client and server random
values.

�session resumption identifier; in TLS, the identifier of the epoch that completed the
session being resumed. (The miTLS code also assigns the TLS sessionId,
chosen by the server, but we do not use it as an identifier as it is not
necessarily unique.)

aC, aS client and server negotiation parameters; in TLS, they consist of protocol
versions, ciphersuites, and extension messages.

a agility parameter; in TLS, the protocol version, the negotiated ciphersuite,
and data extracted from the first flight of messages sent by the server.

certC,certS client and server certificate chains. In TLS, these certificates are optional;
e.g. the assignment certC := ⊥ denotes the absence of client certificate.

exC, exS client and server exchange variables, possibly secret, used to specify safety.
k record key for the epoch; in TLS, depending on a, this key is usually split

into 4 keys for MAC & encrypt.
complete successful completion flag, marking the end of the handshake for this epoch.

Unless explicitly mentioned for key-exchange materials, these variables are
public: the adversary can read them, but not change them; the protocol can
write them once in every epoch, but not read them. (This restriction matters
only for the record key, as we replace it with a random value.) The agility-
parameter variable a determines the algorithms and constructions used by the
handshake. Our security properties are conditioned by a strength predicate α(a)
that indicates whether those algorithms are strong enough to secure the epoch.
When the role of an epoch is clear from the context, the peer refers to the
opposite role, and the peer-exchange variable refers to the exchange variable of
the opposite role (e.g. exC when R is S).

We deliberately avoid modeling certificate validation. For the handshake, cer-
tificate chains are authenticated, uninterpreted bitstrings. We leave as future

248 K. Bhargavan et al.

work supplementing our model with an application-level certificate infrastruc-
ture above the miTLS API. We assume given a public specification function
pk(cert) that returns either the public key associated with a certificate chain,
or ⊥. The session state does not need to explicitly mention public keys, but
public keys can appear in exchange variables.

A security model for a protocol describes how queries are answered and how
session variables are assigned. Next, we define properties of these models as they
interact with an adversary.

Definition 4 (Honesty, Safety, Matching Algorithms and Completion).
For a handshake protocol Π and a strength predicate α(·), an adversary that
calls Π’s oracles any number of times produces a trace of interleaved variable
assignments for a series of epochs for each instance. In this trace:

– As determined by its assigned agility parameter a: an epoch is either a ses-
sion, with distinguished client- and server-exchange variables, or a resump-
tion, with an �session variable; sessions (and their exchange variables) are
either static or ephemeral; a static session has at least one static exchange
variable; an ephemeral session has only ephemeral exchange variables.

– A (long-term) public key is honest for algorithm v if it was returned by a call
to KeyGen(v). A session’s ephemeral server-exchange variable assignment is
honest if there is a server session with the same assignment to its server-
exchange variable—and conversely for ephemeral client-exchange variables.

– A client session is safe if (i) α(a) holds; (ii) honest public keys for a’s
algorithms are assigned to all static exchange variables; and (iii) there is a
server session with the same assignment to the ephemeral server-exchange
variable. A server session is safe if the converse holds.

– A resumption is safe if α(a) holds and �session is the identifier of a safe and
complete session.

– An epoch has matching algorithm r = record(a) when there is a peer epoch
with the same identifier � and algorithm r.

– An epoch is complete when it includes the assignment complete := 1.

Anticipating on §5, for TLS we define the client exchange value exC to be the
master secret ms together with the KEM public key pk, and the server-exchange
variable exS to be the public key pk of the KEM. The latter is static for TLS-
RSA, but ephemeral for TLS-DHE. Here ms is explicitly secret and ephemeral.

Definition 5 (Handshake Security). Let Π be a handshake protocol, α(·) a
strength predicate, and A an adversary that calls Π’s oracles any number of
times. Consider the following properties:

(1) Uniqueness: epoch identifiers are used at most once in each role.
Let AdvU(A) be the probability that two different epochs with the same role
assign the same value to � when A terminates.

(2) Verified Safety: if the peer of a session uses a strong signature algorithm
to authenticate and the public-key for the peer signature is honest, then the
peer-exchange variable assignment is honest.

Proving the TLS Handshake Secure (As It Is) 249

Let AdvS(A) be the probability that, when A terminates, there is an epoch
such that α(a) holds; the public key of the peer is honest; and the assignment
to the peer exchange value is not honest (i.e. not assigned by any peer);

(3) Agile Key Derivation: depending on a random bit b, replace the record
key assigned in safe epochs with matching algorithm r with a fresh k ←
KeyGen(r), assigning the same value to epochs that have the same identifier �,
algorithms kdf(a) and exchange variables or resumption identifier.
Let AdvK(A) = 2p− 1 where p is the probability that A returns b.

(4) Agreement: for every safe and complete epoch, there is a safe epoch in the
other role such that their two instances agree on all prior assignments.
Let AdvI(A) be the probability that, when A terminates: an instance created
by Init(R, cfg) assigns complete := 1 in a safe epoch; and no instance created
by Init(R, cfg′) begins with a series of epochs with the same assignments to
all variables (up to, but possibly excluding complete := 1).

The handshake is (ε, t, α)-secure when for any adversary A running in time t,
we have AdvG(A) ≤ ε, for G = U, S,K, I.

Discussion. The properties above are given in chronological order: in TLS in
particular, protocol instances first exchange fresh random values, then derive
keys, and finally confirm the integrity of the session negotiation.

Property (1) simply ensures that � provides a unique identifier, later authen-
ticated using (4); we use these identifiers for matching client and server sessions.

Property (2) enables, for instance, a client that trusts both the negotiated
algorithm and the server certificates to deduce that its server-exchange variable
is honest, and conclude that its session is safe.

Property (3) idealizes the derived key; this is key indistinguishability. Recall
that TLS uses the key before the two parties actually agree on the record al-
gorithms. Conservatively, (3) idealizes the key only when the record algorithms
match. As Krawczyk et al. [17], our model does not consider forward secrecy.

Property (4) guarantees agreement on all variable assignments at the client
and server instances since their creation, not just the assignments of the current
epoch. Hence, as soon as one epoch safely completes, the peers agree also on all
prior epochs on that connection—even those that were not safe, or not verifiably
safe. For TLS, this property holds only thanks to the (mandatory) secure rene-
gotiation extension, which links each epoch to its predecessor. This property is
closely related to the TLS renegotiation results of Giesen et al. [11]. They addi-
tionally propose an extension of TLS that would guarantee agreement on the full
stream of application data, not just the handshake epochs. On the other hand,
our model and security definition also cover resumptions and RSA ciphersuites,
which are not covered by their results. Unlike previous analyses of TLS, our def-
inition accounts for session resumptions. Property (4) guarantees agreement on
the new epoch identifier � and the identifier �session of the resumed session (and
hence on the new record keys), as long as the original session is safe. The epochs
of the original session may be on a different connection, between a different pair
of instances; for those instances, safety for the original session independently
guarantees agreement on all its original variable assignments.

250 K. Bhargavan et al.

TLS applications often group connections that use the same session or the
same long-term key, allowing them to share resources and access rights. For ex-
ample, web browsers allow all connections to the same server to share resources
via the Same Origin Policy. It may seem desirable to guarantee a strong rela-
tionship between such connections, but our Property (4) guarantees agreement
only for the sequence of epochs over a single connection. Indeed, the natural ex-
tension of this property to multiple connections does not hold for TLS, as shown
by the triple handshake attack of Bhargavan et al. [5]. In this attack, an unsafe
server-authenticated session is resumed on a new connection and then renego-
tiated with a new safe mutually-authenticated session. For the new safe epoch,
Property (4) retroactively guarantees agreement on the prior resumption, but
not on the original unsafe session that was resumed. Consequently, it is possible
for a client and server instance to have a safe epoch but inconsistent variable
assignments for the session associated with a prior resumed epoch; this leads to
a variety of attacks, similar to the renegotiation attacks of Ray [25]. A stronger
agreement can be achieved either at the application level, by checking agreement
on prior connections, or by a protocol extension that includes a hash of the log
of the original session in resumption handshakes [5]; we leave the modeling of
this extension and its security for future work.

Compared with classic key exchange models [3] and the key exchange part
of ACCE [13], our definition yields useful additional properties. Property (4)
guarantees agreement on the negotiation parameters aC and aS for safe and
complete epochs, thereby preventing version and ciphersuite rollback attacks.

Our definition also provides (some) security for anonymous connections, which
can be composed with other authentication mechanisms to achieve application
security. For example, renegotiation with client and server certificates may pro-
vide mutual authentication on top of an initial, safe, but anonymous handshake.
Late application-level, client password authentication may also yield mutual au-
thentication, as illustrated by miTLS [4].

5 Proving Agile Security for TLS Handshakes

We are now ready to reduce the security of TLS handshakes to the security of ag-
ile signatures, KEMs and PRFs. We structure the proof to apply simultaneously
to the protocol, illustrated in Figures 1 and 2, and to its miTLS implementation.

Figure 1 shows the assignments performed by a client instance and a server
instance that run two successive, matching handshakes on the same connection:
for both instances, a static session, followed by a (renegotiated) resumption.
Figure 2 similarly shows the assignments for an ephemeral session. The agility
parameter a of the handshake indicates which algorithm to use for each underly-
ing functionality. We write for instance a := algC(cfgC , aS) to retrieve a from the
client configuration and the negotiation parameter of the server; e, p := kem(a)
to retrieve the core algorithm e and public parameter of the master secret KEM
from a; and Ee.Enc for encryption using the master-secret KEM for e.

Our second main theorem reduces the security of TLS handshakes to their un-
derlying algorithms, depending on a strength predicate on their agility parameters.

Proving the TLS Handshake Secure (As It Is) 251

Client Server

�C ← $; aC :=cfgC.aC ClientHello[�C, aC] �S ← $; � :=�C‖�S ; sid ← $;
certS :=cfgS .cert; certC := ⊥
pk :=pk(certS); exS := pk
sk := lookup sk using pk
a, aS :=algS(cfgS , aC);ServerHelloDone

ServerHello[�S , aS , sid]
ServerCertificate[certS]

� :=�C‖�S ; a :=algC(cfgC , aS)
pk :=pk(certS)
c,ms ← Ee.Enc(pE, pk, �)
exS :=pk; exC :=(pk,ms)
k :=
PRF(pD,ms, t1 ‖�S ‖�C)�r
logC := 〈prior messages〉
tagC :=
PRF(pD,ms, t2‖logC)�p

ClientKeyExchange[c]

ClientFinished[tagC]

ms ← Ee.Dec(pE, sk, �, c)
exC :=(pk,ms)
logC := 〈prior messages〉
tagC

?
=
PRF(pD,ms, t2‖logC)�p

k :=
PRF(pD,ms, t1 ‖�S ‖�C)�r
logS := 〈prior messages〉
tagS :=
PRF(pD,ms, t3‖logS)�p
complete :=1; store(�, sid,ms)

ServerFinished[tagS]
logS := 〈prior messages〉
tagS

?
=
PRF(pD,ms, t3‖logS)�p

complete :=1

Client resumes session (�, sid,ms) using aC and tagC from the epoch above

�C ← $; �session :=� ClientHello
[�C, aC, sid, tagC]

lookup (�′,ms,tagS) using sid
�S ← $; �session :=�′

ServerHello
[�S , aS , sid, tagC, tagS]

� :=�C ‖�S
k :=
PRF(pD,ms, t1 ‖�S ‖�C)�r
logS := 〈prior messages〉
tagS :=
PRF(pD,ms, t3‖logS)�p
logC := 〈prior messages〉

ServerFinished[tagS]

� :=�C ‖�S
k :=
PRF(pD,ms, t1 ‖�S ‖�C)�r
logS := 〈prior messages〉
tagS

?
=
PRF(pD,ms, t3‖logS)�p

logC := 〈prior messages〉
tagC :=
PRF(pD,ms, t2‖logC)�p
complete :=1

tagC
?
=
PRF(pD,ms, t2‖logC)�p

complete :=1
ClientFinished[tagC]

Two epochs on the same connection: the first handshake establishes a session without
client authentication using static keys; the second one resumes the session.
Conventions in the figure:
(1) We use

?
= for checks; a failed check stops the instance.

(2) We use := for assigning epoch variables; variables exchanged in messages are im-
plicitly assigned, e.g. the server assigns �C and aC after parsing the first message.
(3) We omit the extraction of the negotiated key exchange algorithm e and the param-
eters pE, pD from a; for instance, we write pD for prf(a).
(4) We omit ChangeCipherSpec messages: they are not part of the handshake protocol.
(5) We write 〈prior messages〉 for the concatenation of all messages sent and received
so far in the epoch, starting from the latest ClientHello. (6) We let
.�r and
.�p be
functions that truncate to record-key and MAC sizes.
(7) We let t1, t2, t3 abbreviate the constant strings "derive key", "client finished",
"server finished"; we write ‖ for bytestring concatenation.

Fig. 1. Abstract model of TLS handshake protocol (static handshake; resumption)

252 K. Bhargavan et al.

Client Server

�C ← $; aC :=cfgC.aC ClientHello[�C, aC, tagC] �S ← $; � :=�C‖�S ; sid ← $
certS :=cfgS .cert; certC :=⊥
pk :=pk(certS)
sk := lookup sk using pk
a, aS :=algS(cfgS , aC)
ske, pke ← Ee.KeyGen()
exS :=pke
σ ← Ss.Sign(pS, sk, pke)ServerHelloDone

ServerHello
[�S, aS, sid, tagC,tagS]
ServerCertificate[certS]
ServerKeyExchange[pke, σ]

� :=�C‖�S ; a :=algC(cfgC , aS)

Ss.Verify(pS, pk, pke, σ)
?
=1

c,ms ← Ee.Enc(pE, pke, �)
exS :=pke; exC :=(pke,ms)
k :=
PRF(pD,ms, t1 ‖�S ‖�C)�r
logC := 〈prior messages〉
tagC :=
PRF(pD,ms, t2‖logC)�p

ClientKeyExchange[c]

ClientFinished[tagC]

ms ← Ee.Dec(pE, ske, �, c)
exC :=(pke,ms)
logC := 〈prior messages〉
tagC

?
=
PRF(pD,ms, t2‖logC)�p

k :=
PRF(pD,ms, t1 ‖�S ‖�C)�r
logS := 〈prior messages〉
tagS :=
PRF(pD,ms, t3‖logS)�p
complete :=1; store (�, sid,ms)

ServerFinished[tagS]

logS := 〈prior messages〉
tagS

?
=
PRF(pD,ms, t3‖logS)�p

complete :=1

Fig. 2. Abstract model of TLS handshake protocol (ephemeral renegotiation)

Its proof (in the full paper) relies on intermediate definitions for multi-key li-
braries and, as a first step, uses hybrid arguments to lift security from our agile
definitions to the multi-key setting.

Theorem 2 (TLS Handshake). Let a, a� range over the agility parameters
supported by TLS. Let Ps = {p� | s, p� := sig(a�)}, Pe = {p� | e, p� := kem(a�)},
and P = {p� | p� := prf(a�)}. Let α be a strength predicate (Definition 4) such
that the following assumptions hold:

(1) If α(a) and s, p :=sig(a) then Ss is EUF-CMA (εs,p, ts,p, p, Ps)-secure.
(2) If α(a) and e, p :=kem(a) then Ee is IND-RCCA-nms (εe,p, te,p, p, Pe)-secure.
(3) If α(a) and p :=prf(a) then PRF is an (εp, tp, p, P)-secure PRF.

Let ns bound the number of calls to Ss.KeyGen. Let n and nms bound the number
of epochs and sessions. Let ne bound the number of calls to Ee.KeyGen, both for
ephemeral and static KEMs. The TLS handshake is (ε, t, α)-secure, where

ε =
∑
s

∑
p

nsεs,p +
∑
e

∑
p

neεe,p + nms

∑
p

εp + n2(2−225 + 2−minp|�.�p|)

and where each t∗ in the assumptions is at most t plus the cost of simulating Π
in the reduction.

Discussion. In the theorem, the sets Ps, Pe, and P represent the worst case.
Indeed, signers may, for those keys that they consider honest, stop using signa-
ture algorithm s together with weak hash functions, like MD5, while TLS may

Proving the TLS Handshake Secure (As It Is) 253

still support verification using such hash algorithms for backward compatibility.
To model such scenarios, one could instead add Ps, Pe, and P to the state of the
experiment to record which hash algorithms have been used so far for signing,
decrypting and deriving keys to obtain a more precise statement.

6 Verified Reference Implementation

We jointly programmed the TLS handshake and developed its proof. We finally
outline our code, and explain how its structure and automated verification relate
to the cryptographic models of §2–5; we provide additional details and perfor-
mance results in the full paper. Our handshake implementation for miTLS con-
sists of 3,600 lines of F# code plus 2,050 lines of F7 specifications; it supports four
protocol versions, three key exchange mechanisms, two signature algorithms, and
four hash functions. It deals mostly with the protocol aspects; indeed, our cryp-
tographic proof for Theorem 1, conducted with EasyCrypt, concerns less than
200 lines of F#. Conversely, Theorem 2 involves the full codebase and proving
it requires a modular design and automated program verification techniques.

We adopt the type-based cryptographic verification method of Fournet et al.
[10], previously applied to miTLS by Bhargavan et al. [4, §2]. The miTLS library
consists of 45 modules, not counting application code or platform libraries. Each
module implements a single cryptographic functionality or protocol component
and represents an abstraction boundary through its interface. A module is ei-
ther trusted to be implemented correctly (e.g. the session database), or idealized
under a cryptographic assumption (e.g. signatures) then verified, or perfectly
verified (e.g. the protocol state machine). Each module interface specifies precon-
ditions, postconditions, and type abstractions that govern the conditions under
which secrets (keys, plaintexts, etc.) may be read or written by other modules.

We discuss the design of three important components that we modified during
the course of this paper. TLSInfo defines agility parameters and logical predicates
(corresponding to α in Definition 4) that specify algorithmic strength, honesty
for both long-term-keys and ephemeral secrets, matching record algorithms, and
handshake completion events. This new logical model is more detailed than the
original one [4]; furthermore, we extended the session structure and logical model
to provide a general treatment of protocol extensions. HandshakeMessages imple-
ments message formatting and parsing; agreement (Definition 5(4)) depends on its
details, since only formatted data is cryptographically authenticated. This code is
complicated but not especially deep, and best handled using automated verifica-
tion. Handshake implements the handshake state machine (Send in §5). Its code
is not as simple as suggested by the KEMs of §3, since the TLS standard employs
different sequences of messages for (say) RSA and DHE handshakes. Hence, we
have similar but separate code for them, each of their interfaces complying with
the KEM abstraction of §3. Also, our code handles errors and warnings, omitted
in this presentation but also verified.

254 K. Bhargavan et al.

Our new results on the handshake, composed with prior results on miTLS [4]
(the record layer, the top-level API, and various applications) yield agile, verified
application security for TLS as it is.

References

1. Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its reation
to circular encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 403–422. Springer, Heidelberg (2010)

2. Barthe, G., Grégoire, B., Heraud, S., Zanella-Béguelin, S.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011)

3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

4. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.-Y.: Implementing
TLS with verified cryptograhic security. In: IEEE Symposium on Security and
Privacy (2013)

5. Bhargavan, K., Delignat-Lavaut, A., Fournet, C., Pironti, A., Strub, P.-Y.: Triple
handshakes and cookie cutters: Breaking and fixing authentication over TLS. In:
IEEE Symposium on Security and Privacy (2014)

6. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on RSA
encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

7. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003)

8. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput-
ing 33(1), 167–226 (2003)

9. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2
(2008)

10. Fournet, C., Kohlweiss, M., Strub, P.-Y.: Modular code-based cryptographic veri-
fication. In: ACM CCS 2011 (2011)

11. Giesen, F., Kohlar, F., Stebila, D.: On the security of TLS renegotiation. In: ACM
CCS 2013 (2013)

12. Haber, S., Pinkas, B.: Securely combining public-key cryptosystems. In: ACM CCS
2001 (2001)

13. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012)

14. Jonsson, J., Kaliski Jr., B.S.: On the security of RSA encryption in TLS. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 127–142. Springer, Heidelberg (2002)

15. Kĺıma, V., Pokorný, O., Rosa, T.: Attacking RSA-based sessions in SSL/TLS. In:
Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 426–440.
Springer, Heidelberg (2003)

16. Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DH and TLS-RSA in
the standard model. Cryptology ePrint Archive, Report 2013/367 (2013)

Proving the TLS Handshake Secure (As It Is) 255

17. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: A
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 429–448. Springer, Heidelberg (2013)

18. Langley, A.: Unfortunate current practices for HTTP over TLS (2011),
http://www.ietf.org/mail-archive/web/tls/current/msg07281.html

19. Modadugu, N., Langley, A., Moeller, B.: Transport Layer Security (TLS) False
Start. Internet Draft (2010)

20. Mavrogiannopoulos, N., Vercauteren, F., Velichkov, V., Preneel, B.: A cross-
protocol attack on the TLS protocol. In: ACM CCS 2012 (2012)

21. Morrissey, P., Smart, N.P., Warinschi, B.: A modular security analysis of the TLS
handshake protocol. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350,
pp. 55–73. Springer, Heidelberg (2008)

22. Naccache, D., Shparlinski, I.E.: Divisibility, Smoothness and Cryptographic Appli-
cations. ArXiv e-prints (October 2008)

23. Paterson, K.G., Ristenpart, T., Shrimpton, T.: Tag size does matter: Attacks and
proofs for the TLS record protocol. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 372–389. Springer, Heidelberg (2011)

24. Qualys SSL labs. SSL server test,
https://www.ssllabs.com/ssltest/analyze.html

25. Ray, M.: Authentication gap in TLS renegotiation (2009),
http://extendedsubset.com/Renegotiating_TLS.pdf

26. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A., de
Weger, B.: Short chosen-prefix collisions for MD5 and the creation of a rogue CA
certificate. Cryptology ePrint Archive, Report 2009/111 (2009)

27. Wagner, D., Schneier, B.: Analysis of the SSL 3.0 protocol. In: 2nd USENIX Work-
shop on Electronic Commerce, WOEC 1996 (1996)

http://www.ietf.org/mail-archive/web/tls/current/msg07281.html
https://www.ssllabs.com/ssltest/analyze.html
http://extendedsubset.com/Renegotiating_TLS.pdf

	Proving the TLS Handshake Secure (As It Is)
	1 Introduction
	1.1 Cryptographic Agility
	1.2 Empirical Study of Web Servers and Browsers
	1.3 Cross-Ciphersuite Attacks
	1.4 Multiple Sessions and Connections
	1.5 Proving the TLS Handshake Secure
	1.6 Overview of the Paper

	2 Agile Signatures
	3 Master Secrets and Key Encapsulation
	4 Defining Agile Security for Sequences of Handshakes
	5 Proving Agile Security for TLS Handshakes
	6 Verified Reference Implementation
	References

