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In this paper, we introduce the first fully implemented two-way authentication security
scheme for the Internet of Things (IoT) based on existing Internet standards, specifically
the Datagram Transport Layer Security (DTLS) protocol. By relying on an established stan-
dard, existing implementations, engineering techniques and security infrastructure can be
reused, which enables easy security uptake. Our proposed security scheme is therefore
based on RSA, the most widely used public key cryptography algorithm. It is designed to
work over standard communication stacks that offer UDP/IPv6 networking for Low power
Wireless Personal Area Networks (6LoWPANs). Our implementation of DTLS is presented in
the context of a system architecture and the scheme’s feasibility (low overheads and high
interoperability) is further demonstrated through extensive evaluation on a hardware plat-
form suitable for the Internet of Things.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Today, there is a multitude of envisioned and imple-
mented use cases for the IoT and wireless sensor networks
(WSNs). It is desirable, in most of these scenarios, to also
make the data globally accessible to authorized users and
data processing units through the Internet. Naturally,
much of the data collected in these scenarios, such as loca-
tions and personal IDs, is of a sensitive nature. Even seem-
ingly inconspicuous data, such as the energy consumption
measured by a smart meter, can lead to potential infringe-
ments on the users’ privacy, e.g. by allowing an eavesdrop-
per to conclude whether or not a user is currently at home.
From an industry perspective, there is also a pressing need
for security solutions based on standards. The market re-
search firm Gartner, Inc. states in their report – 2012 Hype
Cycle for the Internet of Things – [3]: ‘‘The Internet of Things
concept will take more than 10 years to reach the Plateau
of Productivity – mainly due to security challenges, privacy
policies, data and wireless standards, and the realization
that the Internet of Things requires the build-out of a
topology of services, applications and a connecting infra-
structure.’’ Regarding the infrastructure, security risks are
aggravated by the trend toward a separation of sensor net-
work infrastructure and applications [4,5]. Therefore, a
true end-to-end security solution is required to achieve
an adequate level of security for the IoT. Protecting the
data once it leaves the scope of the local network is not
enough.

A similar scenario in the traditional computing world
would be a user browsing the Internet over an unsecured
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WLAN. Attackers in physical proximity of the user can cap-
ture the traffic between the user and a web server. Coun-
termeasures against such attacks include the
establishment of a secured connection to the web server
via HTTPS, the use of a VPN tunnel to securely connect to
a trusted VPN endpoint and using wireless network secu-
rity such as WPA.

These solutions are comparable to security approaches
in the IoT area. Using WPA is similar to the traditional
use of link layer encryption. The VPN solution is equivalent
to creating a secure connection between a sensor node and
a security end-point, which may or may not be the final
destination of the sensor data. Establishing a HTTPS con-
nection with the server is comparable to our approach:
We investigate the use of the DTLS protocol in an end-to-
end security architecture for the IoT. DTLS is an adaption
of the widespread TLS protocol, used to secure HTTPS, for
unreliable datagram transport. By choosing DTLS we have
made three high-level design decisions:
1.1. Implementation of a standards based design

Standardization has helped the widespread uptake of
technologies. Radio chips can rely on IEEE 802.15.4 for
the physical and the MAC layer. The IPv6 Routing Protocol
for Low power and Lossy Networks (RPL) or 6LoWPAN pro-
vide routing functionality and CoAP [6] defines the applica-
tion layer. So far, no such efforts have addressed security in
a wider context for the IoT.
1.2. Focus on application-layer end-to-end security

An end-to-end protocol provides security even if the
underlying network infrastructure is only partially under
the user’s control. As the infrastructure for Machine-
to-Machine (M2M) communication is getting increasingly
commoditized, this scenario becomes more likely: The
European Telecommunications Standards Institute (ETSI)
is currently developing a standard that focuses on provid-
ing a ‘‘horizontal M2M service platform’’ [5], meaning that
it plans to standardize the transport of local device data to
a remote data center. For stationary installations security
functionality could be provided by the gateway to the
higher level network. However, such gateways would pres-
ent a high-value target for an attacker. If the devices are
mobile, for example in an logistics application, there may
be no gateway to a provider’s network that is under the
user’s control, similar to how users of smart phones con-
nect directly to their carrier’s network. Another example
that favors end-to-end security is a multi-tenancy office
building that is equipped with a common infrastructure
for metering and climate-control purposes. The tenants
share the infrastructure but are still able to keep their de-
vices’ data private from other members of the network.
Using a protocol like DTLS, which is placed between trans-
port and application layer, does not require that the infra-
structure provider supports the security mechanism. It is
purely in the hands of the two communicating applications
to establish security. If the security is provided by a net-
work layer protocol, such as IPsec, the same is true to a
lower degree because the network stacks of both devices
must support the same security protocol.
1.3. Support for unreliable transport protocols

Reliable transport protocols like TCP incur an overhead
over simpler, unreliable protocols such as UDP. Especially
for energy starved, battery powered devices this overhead
is often too costly and TCP has been shown to perform
poorly in low-bandwidth scenarios [7]. This is reflected
in the design of the emerging standard CoAP, which uses
UDP transport and defines a binding to DTLS for security
[6]. By using DTLS in conjunction with UDP our approach
does not force the application developer to use reliable
transport – as would be the case if TLS would be used. It
is still possible to use DTLS over transport protocols like
TCP, since DTLS only assumes unreliable transport.

This is a weaker property than the reliability provided
by TCP. However, the adaptations of DTLS for unreliable
transport introduce additional overhead when compared
to TLS. There might be a benefit in using TCP during the
handshake phase but, as we point out in Section 5.2, the
DTLS reliability mechanism should be adapted to the spe-
cial requirements of constrained networks. A study of TCP’s
infuence on the handshake is therefore out of scope of this
article.

The rest of the paper is organized as follows: We outline
related work, mainly from the field of security in Wireless
Sensor Networks (WSNs), in Section 2. WSNs are a suitable
reference point because they are constrained in terms of
computational power, available memory, energy consump-
tion and network bandwidth. Section 3 provides the reader
with an introduction to the DTLS protocol before we pres-
ent our system architecture in Section 4. In order to assess
the feasibility of using DTLS in a constrained environment
we implemented a prototype on a constrained device. We
thoroughly evaluate this implementation in Section 5 to
identify areas in which the standard protocol could be
modified to better meet the challenges of a WSN environ-
ment. In Section 6, we show a practical proof of concept in
a building scenario. Our conclusion is given in Section 7.
2. Related work

Traditionally, security protocols in sensor networks
focus on link layer security, protecting data on a hop-
by-hop basis. The simplest approach to link layer security
consists of using a network-wide encryption key, which of-
ten is the case in ZigBee networks [8]. ZigBee also provides
support for cluster and individual link keys. MiniSec [9] is
another well known security mechanism for WSNs that
provides data confidentiality, authentication and replay
protection. As with ZigBee, the packet overhead introduced
by MiniSec is in the order of a few bytes. The widespread
TinySec link layer security mechanism is no longer consid-
ered secure [9].

Most security protocols do not include a mechanism for
how encryption keys are distributed to the nodes. Keys are
either loaded onto the nodes before setup or a separate key
establishment protocol is used. Public key cryptography
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(PKC) is used in traditional computing to facilitate secure
key establishment. However, public key cryptography, in
particular the widespread RSA algorithm, has been consid-
ered too resource consuming for constrained devices. Some
security protocols, such as Sizzle [10], advocate the use of
the more resource efficient Elliptic Curve Cryptography
(ECC) public key cryptosystem. Other research efforts, such
as the secFleck [11] mote, provide support for faster RSA
operations through hardware.

Approaches without PKC often rely on the pre-distribu-
tion of connection keys. Random key pre-distribution
schemes, such as the q-composite scheme by Chan et al.
[12], establish connections with a node’s neighbors with
a certain probability p < 1. Intuitively, pre-distributed
key schemes such as this require a large amount of keys
to be loaded onto the nodes before deployment. Depend-
ing on the method used, this approach is scaling in Oðn2Þ
or OðnÞ where n is the number of nodes in the network.
The Peer Intermediaries for Key Establishment protocol
(PIKE) achieves sub linear scaling in O

ffiffiffi
n
p� �

by relying
on the other nodes as trusted intermediaries. While PIKE
provides higher memory efficiency than random schemes,
it still leaks additional key information when motes are
captured.

Recently, more research into end-to-end security proto-
cols for the IoT and WSNs is being conducted. As outlined
in the introduction, such a protocol protects the message
payload from the data source until it reaches its target. Be-
cause end-to-end protocols are usually implemented in the
network or application layer, forwarding nodes do not
need to perform any additional cryptographic operations
since the routing information is transmitted in the clear.
On the flip side, this means end-to-end security protocols
do not provide the same level of protection of a network’s
availability as a link layer protocol could. One example of
an end-to-end security protocol is Sizzle by Gupta et al.
[10]. Sizzle is a compact web server stack providing HTTP
services secured by SSL. It uses 160-bit ECC keys for key
establishment which provide a similar level of security as
1024-bit RSA keys. In contrast to our work, it requires a
reliable transport layer which has been shown to incur
large performance penalties in low bandwidth situations
[7]. Sizzle also omits two-way authentication: Only the
Sizzle enabled node is authenticated by a remote, more re-
source rich, client. This is insufficient for machine to ma-
chine communication in the IoT. SSNAIL [13] makes
similar design choices as Sizzle and performs an ECC hand-
shake over reliable TCP transport. Similar to our imple-
mentation, SSNAIL is able to perform a full, two-way
authenticated handshake but it still requires a reliable
transport protocol.

Raza et al. [14] discuss how the IPsec protocol can be
integrated into 6LoWPAN, the compressed IPv6 implemen-
tation used in most IP-enabled sensor networks. Their
work focuses on how data transfer with IPsec can be made
efficient in the context of 6LoWPAN. Regarding the Inter-
net Key Exchange protocol (IKE), which is used for key
establishment in IPsec networks, Raza et al. [15] discuss
methods for reducing the headers to make IKE more suit-
able for constrained devices, but do not present a perfor-
mance analysis alongside their proposal.
As mentioned in the introduction, CoAP is an applica-
tion layer standardization effort for the Internet of Things.
The current draft specifies a binding of CoAP to DTLS to
achieve security [6]. Another proposal by Raza et al. aims
to reduce the communication overhead of the DTLS head-
ers through compression [16]. As with the work on IPsec,
we are currently not aware of any publication evaluating
the performance of DTLS over 6LoWPAN. Our work can
thus support these efforts by providing a set of real-world
measurements from our DTLS implementation.
3. The Datagram Transport Layer Security protocol

All messages sent via DTLS are prepended with a 13 by-
tes long DTLS record header. This header specifies the con-
tent of the message (e.g. application data or handshake
data), the version of the protocol employed, as well as a
64-bit sequence number and the record length. The top
two bytes of the sequence number are used to specify
the epoch of the message which changes once new encryp-
tion parameters have been negotiated between client and
server. Fig. 1 shows the DTLS record header in white. The
record header is either followed by the plaintext if no secu-
rity has been negotiated yet, or by the DTLS block cipher. If
a block cipher is used, the plaintext is prepended by a ran-
dom Initialization Vector (IV), which has the size of the ci-
pher block length. This protects against attacks where
attackers can adaptively choose plaintext. The plaintext is
followed by a Hash-based Message Authentication Code
(HMAC) which allows the receiver to detect if the DTLS re-
cord has been altered. Finally, the message is padded to a
multiple of the cipher block length. The area of the mes-
sage shown in grey in Fig. 1 is encrypted with the block ci-
pher, striped parts are not used to calculate the HMAC.
Unlike TLS, DTLS does not allow for stream ciphers because
they are sensitive to message loss and reordering. Instead,
DTLS uses block ciphers in the Cipher-Block Chaining (CBC)
mode of operation.

The key material and cipher suite, consisting of a block
cipher and a hash algorithm, are negotiated between client
and server during the handshake phase which commences
before any application data can be transferred. There are
three types of handshake: unauthenticated, server authen-
ticated and fully authenticated handshakes. During an
unauthenticated handshake neither party authenticates
with the other, and during a server authenticated hand-
shake only the server proves its identity to the client. In
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a fully authenticated handshake the client has to authenti-
cate itself to the server as well. In the following we will not
consider the unauthenticated handshake because it pro-
vides no authenticity at all.

There are different algorithms that can be used for
authentication in a DTLS handshake. Variants based on
ECC have been shown in embedded networks [10]. Since
we argue for a standard-based communication architec-
ture for the IoT to promote interoperability, the rest of the
paper will focus on authentication based on RSA. Because
it is today’s dominant PKC system [17] a suitable infra-
structure for obtaining certificates from commercial Certif-
icate Authorities (CA) is already in place.

Fig. 2 shows a fully authenticated DTLS handshake.
Individual messages are grouped into ‘message flights’
according to their direction and occurrence sequence.
Flight 1 and 2 are an optional feature to protect the server
against Denial-of-Service (DoS) attacks. The client has to
prove that it can receive data as well as send data by
resending its ClientHello message with the cookie sent
in the ClientHelloVerify message by the server. The
ClientHello message contains the protocol version sup-
ported by the client as well as the cipher suites that it sup-
ports. The server answers with its ServerHello message
that contains the cipher suite chosen from the list offered
by the client. The server also sends a X.509 certificate to
authenticate itself followed by a CertificateRequest

message if the server expects the client to authenticate.
The ServerHelloDone message only indicates the end
of flight 4. If requested and supported, the client sends
its own certificate message at the beginning of flight 5.
The ClientKeyExchange message contains half of the
pre-master secret encrypted with the server’s public RSA
key from the server’s certificate. The other half of the
pre-master secret was transmitted unprotected in the
ServerHello message. The keying material is subse-
quently derived from the pre-master secret. Since half of
the pre-master secret is encrypted with the server’s public
key it can only complete the handshake if it is in posses-
sion of the private key matching the public key in the ser-
ver certificate. Accordingly, in the CertificateVerify

message the client authenticates itself by proving that it
is in possession of the private key matching the client’s
public key.

It does this by signing a hashed digest of all previous
handshake messages with its private key. The server can
ClientHello*
ClientHelloVerify*

ClientHello

Finished

ChangeCipherSpec
Finished

Flight 1

Flight 3

Flight 5

Flight 2

Flight 4

Flight 6

ServerHello, Ceritifcate,
[Certificate Request], ServerHello Done

[Certificate], ClientKeyExchange, 
[CertificateVerify], ChangeCipherSpec

Client Server

[…] omitted message during server authenticated handshake
encrypted * optional message

Fig. 2. A fully authenticated DTLS Handshake [1,2].
verify this through the public key of the client. The
ChangeCipherSpec message indicates that all following
messages by the client will be encrypted with the negoti-
ated cipher suite and keying material. The Finished mes-
sage contains an encrypted message digest of all previous
handshake messages to ensure both parties are indeed
operating based on the same, unaltered, handshake data.
The server answers with its own ChangeCiperSpec and
Finished message to complete the handshake.
4. A standard based end-to-end security architecture

Our system architecture is following the IoT model. We
assume that the Internet is connected by IPv6 in the near
future, and parts of it run 6LoWPAN. The Transport layer
in 6LoWPAN is UDP which can be considered unreliable,
the routing layer is RPL [18] or Hydro [7]. Our implementa-
tion uses Hqydro for routing, because at the time of writing
our implementation code there was no avaliable RPL
implementation for TinyOS. RPL has since been standard-
ized in RFC 6550 and is distributed with newer versions
of TinyOS. However, both routing protocols are similar en-
ough so that a change should have negligible impact on the
presented results. IEEE 802.15.4 is used for the physical
and Media Access Control layer. Based on this protocol
stack we chose DTLS as our security protocol which places
it in the application layer on top of the UDP transport layer.
Fig. 3 summarizes the protocols used in our architecture.

Similar to security needs in traditional networks such as
the Internet, we consider three security goals:

� Authenticity: Recipients of a message can identify their
communication partners and can detect if the sender
information has been forged.
� Integrity: Communication partners can detect changes

to a message during transmission.
� Confidentiality: Attackers cannot gain knowledge

about the contents of a secured message.

By choosing DTLS as the security protocol we can
achieve these goals. DTLS is a modification of TLS for the
unreliable UDP and inherits its security properties [19].
Using an application layer security protocol like DTLS as
opposed to link or network layer security protocols such
as MiniSec [9] has a number of advantages but also some
drawbacks:

Lower layer security protocols do not provide end-to-
end communication security. On each hop in a multi-hop
Fig. 3. Protocol stack used in our security architecture [1,2].



2714 T. Kothmayr et al. / Ad Hoc Networks 11 (2013) 2710–2723
network, data is decrypted on receipt and re-encrypted for
forwarding. An attacker can thus gain access to all clear
text data that passes through a compromised node. Scala-
bility is often also an issue for these protocols because they
need to establish a secured connection with each of their
neighbors to form a mesh network, and cryptographic
overhead occurs on each hop. On the other hand, in an
end-to-end security protocol, cryptographic overhead oc-
curs on the sender and receiver only. Compromised nodes
provide an attacker with access to the measurement data
from local nodes only. Routing algorithms are also agnostic
of the payload protection, thus even nodes that have not
established a secure connection can be used to forward
packets to a subscriber/destination. One such scenario
could be in an office building shared by multiple occupants
(parties): each party subscribes to a part of the sensor
readings only and wishes to keep the data they subscribed
to private from other parties, yet they still may share a
common communication network to reduce cost.

However, an application layer security protocol does
not protect routing information. Adversaries can therefore
analyze the traffic patterns of a network in clear text. They
may even launch a DoS, worm hole, or resource consump-
tion attack that lowers the availability of the network [20].
In this paper, we focus on end-to-end communication
security, and rely on other schemes for securing lower
communication layers [20].

Scenarios like the one above raise the need for proper
authentication of data publishing devices and access con-
trol throughout the network. We therefore introduce an
Access Control server (AC) into our architecture. The AC
is a trusted entity and a more resource-rich server, on
which the access rights for the publishers (=motes) of the
secured network are stored. The identity of a default sub-
scriber is usually preconfigured on a publisher before it is
deployed. If any additional subscribers want to initialize
a connection with the publisher, they first have to obtain
an access ticket from the AC. The AC verifies that the sub-
scriber has the right to access the information avaliable
from the publisher. The publisher then only has to evaluate
the identity of the subscriber and verify the ticket it has re-
ceived from the AC. Details of this scenario are subse-
quently omitted because they are out of scope of this
paper. More details can be found in reference [2]. This re-
quires a unique identity for a publisher in the network.
In the Internet, identities are usually established via PKC
and the identifiers provided through X.509 certificates. A
X.509 certificate contains, among other information, the
public key of an entity and its common name(e.g. my-
bank.com). The certificate is signed by a trusted third
party, called the Certificate Authority (CA), which serves
two purposes: Firstly, the signature allows the receiver to
detect modifications to the certificate. Secondly, it also
states that the CA has verified the identity of the entity that
requested the certificate.

Hu et al. showed that RSA, the most commonly used
public key algorithm in the Internet, can be used in sensor
networks with the assistance of a Trusted Platform Module
(TPM), which costs less than 5% of a common sensor node
[11]. A TPM is an embedded chip that provides tamper
proof generation and storage of RSA keys as well as hard-
ware support for the RSA algorithm. The certificate of a
TPM equipped publisher and the certificate of a trusted
CA must be stored on the publisher prior to deployment.
For publishers that are not equipped with TPM chips we
propose authentication via the DTLS pre-shared key ci-
pher-suite, which requires a small number of random by-
tes, from which the actual key is derived, to be preloaded
to the publishers before deployment. This secret must also
be made available to the AC server which will disclose the
key to devices with sufficient authorization. Fig. 4 provides
an overview of the proposed architecture which is de-
scribed in detail in references [1,2].
5. Evaluation

Previous work has already demonstrated techniques to
reduce the protocol header overhead during data transmis-
sion [14] and has proven the feasibility of performing soft-
ware encryption and hashing on the sensor node [9], also
called mote. Indeed, even for DTLS, first proposals for a
compressed header format have been made by Raza et al.
recently [16]. Gupta et al. showed the feasibility of a server
authenticated SSL handshake [10]. Therefore, the compo-
nent of our security architecture that is currently least
understood in the context of the IoT is the fully authenti-
cated DTLS handshake, which includes both client and ser-
ver authentication.

We have implemented a DTLS client that performs the
DTLS handshake with an OpenSSL 1.0.0d server. The client
is targeted at the OPAL sensor node [21] which features an
Atmel SAM3U micro-controller and the Atmel
AT97SC3203S TPM. It has 48 kB RAM and the micro-con-
troller is clocked at 48 MHz in our implementation. In
the following sections we will evaluate our implementa-
tion with regards to its performance during the handshake
and data transmission, as well as its energy and memory
consumption. Unless otherwise stated, the DTLS cipher
suite performed was TLS-RSA-with-AES-128-CBC-SHA.
AES-128 has been shown to be one of the fastest block ci-
phers on motes [22] and offers sufficient security. Further-
more, the cipher suite we chose is the required block
cipher suite for DTLS from version 1.2 onwards. Other com-
mon cipher suites are either based on RC4, which is a
stream cipher and thus not permitted by DTLS, or 3DES
which is very slow and thus causes a large cryptographic
overhead.
5.1. Data transfer latency

In this section we will consider latency as a measure of
the system’s cryptographic performance. Fig. 5 shows the
round-trip time (RTT) for different sizes of plaintext data
through a single hop network and a multi hop network
with four hops. We measured the timing for the DTLS pack-
ets on the mote. Readings for pure plaintext data without
any additional headers were obtained by issuing the ping6
command on the subscriber.

A packet sent with both a SHA-1 HMAC and AES-128
encryption is denoted as ‘‘AES-128’’. The denotation
‘‘SHA-1’’ is used if a packet only contained a SHA-1 HMAC.
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The reading for 8 byte plaintext data is missing because the
ICMP-Header and the timestamp sent by ping6 are to-
gether at least 16 byte long.

The chart shows a linear increase of round-trip time
with jumps occurring approximately every 100 bytes.
These spikes can be attributed to the 128 byte maximum
link layer frame size defined by IEEE 802.15.4 which in-
cludes header and trailer. These jumps occur earlier when
sending DTLS protected packets due to the additional DTLS
packet headers, the HMAC size and the explicit Initializa-
tion Vector in each packet. See Section 3 for more details
on the packet structure.

Both the increased packet size and processing overhead
lead to an increased end-to-end transmission latency for
DTLS packets compared to plaintext packets. In the single
hop scenario, transmission latency was increased by up
to 95 ms for AES-128 and up to 75 ms for SHA-1 encryption
which were an average increase of 62% and 35% respec-
tively over the plaintext case. In the multi hop scenario,
round trip times increased by a maximum of 163 ms and
were 74% longer on average for AES-128 encrypted pack-
ets. Packets with a SHA-1 HMAC took up to 129 ms longer
for the round-trip with an average of 40% more time being
spent. The decreased performance for transmission latency
is mostly due to the large packet overhead of up to 64 by-
tes which consists of 13 byte DTLS record header, 16 byte
Initialization Vector, 20 byte HMAC, and up to 15 byte pad-
ding. Calculating a SHA-1 hash of a 255 byte plaintext mes-
sage only takes 9 ms, encryption with AES-128 takes
another 12 ms. Both operations do not contribute signifi-
cantly to the overall transmission latency. This is consis-
tent with the measurements for 16-byte plaintext (RTT of
58 ms) which increases to 90 ms with AES-128. Including
the overhead of the DTLS record format, 16 plaintext bytes
are expanded to a 77 byte message. Sending 80 bytes via
ping requires 78 ms which indicates a computational
overhead of around 12 ms in this case. A more detailed
analysis of the transmission overhead from an energy per-
spective is provided in Section 5.4.

5.2. Handshake latency

Another performance indicator to consider is the la-
tency introduced by performing a DTLS handshake. We
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1 PðPacketlossÞ ¼ 1� 0:95
2438bytes
100bytes

� �
¼ 0:7226.

2 PðPacketlossÞ ¼ 1� 0:90
2;438bytes
100bytes

� �
¼ 0:9282.
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measured the time from the beginning of the handshake
establishment until a Finished message has been re-
ceived on the client. In addition to using a 2048-bit key,
we included the results for a 1024-bit key for comparison.
Fig. 6 shows the average latency for a fully authenticated
and a server authenticated handshake. We conducted 15
measurements for each type of handshake. The bars show
the average over these measurements, and the error bars
show the standard deviation.

The large standard deviation is caused by our implemen-
tation behavior when message loss occurs. DTLS states that
an implementation should wait for an answer for a set
amount of time after sending a flight of messages. If it does
not receive an answer during this period it retransmits the
whole flight. We set this timeout value to 5 s to avoid
unnecessary retransmissions in networks with a high end-
to-end delay, which is common in a low power lossy net-
work, and/or with energy limited thin clients that are slow
to respond. DTLS implementations for the Internet often
choose a retransmission timeout of 1 s or less. In general,
we see that the time to execute a handshake is shorter for
smaller RSA-keys and reduced by almost 2 s when client
authentication is omitted in the handshake. We observed
packet loss mainly in a multi-hop environment and when
larger DTLS messages were being sent. This increases the to-
tal handshake time significantly because of the large DTLS
retransmission timeout. However, total energy consump-
tion of the client does not increase significantly because
all TPM operations, which are the largest contributor to
overall handshake energy costs (cf. Section 5.4), are only
executed after successful receipt of all relevant server mes-
sages. Losing a packet with information obtained from the
TPM does not lead to a repeated execution of the TPM oper-
ations because the resulting messages are buffered and can
be retransmitted. During our experiments we did not see
any failed handshake attempts. In earlier stages of develop-
ment a lost Finishedmessage from the server would cause
the handshake to fail.
The client did not receive the expected Finished mes-
sage and kept retransmitting its last message flight. The
server, however, already considered the handshake to be
complete and was waiting for bulk data transfer from the
client, disregarding its repeated retransmissions of the
handshake messages. DTLS 1.2 addresses this issue by al-
ways issuing a retransmission of the server’s last message
flight when it receives a Finished message from the cli-
ent. We ported this behavior to our version of OpenSSL
to address this problem.

DTLS requires successful transmission of all handshake
packets over an unreliable transport layer. Since it pro-
vides its own reliability mechanism during the hand-
shake, network topology, congestion and link quality
have a large impact on the time needed to complete a
DTLS handshake. One parameter the programmer can
influence to achieve better performance in lossy networks
is the maximum transmission unit (MTU) for DTLS hand-
shake packets which determines the size of individual
handshake packet fragments. To study the influence of
the MTU on overall handshake establishment time we
introduced a random, artificial packet drop rate on the
link layer and measured handshake completion times
for various MTUs.

Fig. 7 shows that even a small amount of packet loss has
a large impact on overall handshake completion time. We
consider each link layer packet to have an independent
chance of being dropped, resulting in the total loss of all
packets that follow. If we take a typical, fully authenticated
DTLS handshake which causes 2438 bytes of traffic as an
example, there is a 72.26%1 chance of packet loss while
transmitting the 2438 bytes of handshake payload at 5% link
layer packet loss. If the link layer packet loss rate is 10%,
there is a 92.82%2 chance of packet loss occurring. In that
case, the DTLS reliability mechanism is waiting for a timeout
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Table 1
RAM and ROM usage by component [1,2].
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before resending the whole message flight [19]. As before,
the retransmission timer was set to 5 s during our
experiments.

We are considering uncorrelated packet loss in this
evaluation, even tough packet loss is correlated in reality.
The reasoning behind these figures is that we cannot know
at which time during the handshake the interference that
causes packet loss will start. We therefore use a constant
probability of packet loss, which will cause all following
fragments of the current message flight to be dropped.
Additional, correlated packet loss before the next retrans-
mission intervall has no adverse impact because the dam-
age is already done.

The MTU influences the granularity at which handshake
messages can be reassembled by the receiver. A small MTU
splits large handshake messages into many different pack-
ets, allowing the receiver a fine grained reassembly if pack-
ets are lost. Since every new packet has to bear the DTLS
header, the overall amount of traffic increases, which in
turn increases the probability of packet loss. A larger
MTU splits messages into fewer packets which reduces
the probability of packet loss because there is less network
traffic. However, if packet loss does occur, reassembly can-
not be done as fine grained as with a smaller MTU. Fig. 7
shows that a MTU of 512 bytes seems to strike the best bal-
ance between reassembly and network traffic in our
experiments.
RAM (bytes) ROM (bytes)

Cryptography 541 10,838
DTLS Messages 1174 2568
DTLS Network 4294 5672
TPM 4321 4928
BLIP 6352 9298
Application 166 –
System 991 30,075

Total data + BSS 17,839 63,379
Stack Minimum 1098 0
Stack Maximum 2300 3936

Total 18,937–20,139 63,379–67,315
5.3. Memory

In order to determine the static memory allocation to
individual components of our implementation we ana-
lyzed the entries in the symbols table of the OPAL binary
after compilation. Memory has been measured for a fully
authenticated handshake with 2048-bit RSA keys. This
type of handshake has the largest memory requirements
since it needs more code and buffer space for the client’s
Certificate and CertificateVerify messages. We
divide the memory consumption into six, respectively se-
ven categories as illustrated in Table 1. Additionally we
measured the maximum stack size by filling the stack with
a dummy variable directly after boot and analyzing how
much of that continuous memory block had been overwrit-
ten after a successful DTLS handshake. The first subtotal of
Table 1 only considers static memory allocation. Because it
currently contributes a significant portion of overall stack
use, we have implemented two prototypical methods of
initializing the client certificate. The method represented
by ‘‘Stack Minimum’’ directly sets each individual Byte of
the outgoing message buffer to the matching value from
the Certificate. The drawback is a increased ROM use be-
cause the code basically contains hundereds of statements
in the form buffer[x] = 0xff. The ‘‘Stack Maximum’’
method initializes the outgoing message buffer from a
temporary array which is filled from a hardcoded,
anonymous array, e.g. uint8_t[CERT_LEN] = {0xff,
0xff,0xff, . . .}. In production the certificate would usu-
ally be read from the mote’s flash memory which should
fall somewhere in between the figures from these two
approaches.



Table 2
Transaction time/energy consumption of DTLS handshake (2048-bit key) [1,2].

Current Fully authenticated handshake Server authenticated handshake

Computation 30 mA 35 ms, 4.18 mJ 33 ms, 3.95 mJ
Radio TX 18 mA 242 ms, 17.4 mJ 70 ms, 5.03 mJ
TPM Start 52.2 mA 836 ms, 174.46 mJ 836 ms, 174.5 mJ
TPM TWI 43.6 mA 688 ms, 120.0 mJ 476 ms, 83.0 mJ
TPM Verify 51.8 mA 59 ms, 12.2 mJ 56 ms, 11.6 mJ
TPM Encrypt 51.8 mA 39 ms, 8.07 mJ 40 ms, 8.28 mJ
TPM Sign 52.2 mA 726 ms, 151.5 mJ –

Total minimum 487.8 mJ 286.4 mJ
CPU idle 11.4 mA 3965 ms, 180.7 mJ 2265 ms, 103.2 mJ
Radio idle 18 mA 3758 ms, 270.4 mJ 2228 ms, 160.3 mJ

Total 939.0 mJ 549.9 mJ
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In total approximately 20 kB of RAM and 67 kB of ROM is
required for the implementation. The BLIP implementation
requires most of the resources, followed by TPM drivers and
DTLS networking code. Overall, the implementation is still
below the 48 kB of RAM and 256 kB of program memory
provided by OPAL [1,2].
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Fig. 8. Current draw for a fully authenticated DTLS handshake [1,2].
5.4. Energy consumption

We measured the energy consumption during the
handshake phase across a 10 X resistor with an oscillo-
scope. This yielded a value for the electric potential which
can be converted into a value for the current draw by
dividing it through the value of the resistance (10 X).

The energy costs can then be calculated as
Uprobe

R � t � Ubattery. Uprobe is the measured voltage, R = 10 X
is the value of the resistor, t is the transaction time, and
Ubattery = 3.998V is the battery voltage. Table 2 shows the
energy consumption during a typical execution of different
handshake types. We use a 2048-bit RSA key because
1024-bit keys are not recommended for future deploy-
ments [23]. Values for current draw in Table 2 specify
the amount that each component contributes to the total
current draw. Fig. 8 shows a capture from the oscilloscope
for a 2048-bit RSA fully authenticated handshake. [1,2].

We chose to neglect the contribution of the radio and
micro-controller in further discussion, which have been
marked as ‘CPU idle’ and ‘Radio idle’ in Table 2. Both can
be considerably reduced by using power saving tech-
niques, e.g. by using the TinyOS Low Power Listening
(LPL) Media Access Control layer for the radio (less than
1% radio duty cycles have been reported by the literature
repeatedly), and setting the micro-controller into a lower
power state where it consumes less than 15 lA for
SAM3U.3 However, the transmission costs of messages in-
creases significantly if LPL is activated. This tradeoff is sub-
ject to the design and configuration of each deployed
network. For better comparison we view the idle energy
use as outside of our field of control and focus on the energy
costs which will ocurr in any case. Sending messages (‘Radio
TX’) and performing cryptographic operations (‘Computa-
3 ATMEL, Datasheet SAM3U Series: http://www.atmel.com/Images/
doc6430.pdf.
tion’) contribute very little to the overall energy costs that
are directly dependent on our DTLS implementation. The to-
tal cost is then largely bound by the energy usage of the
TPM.

As can be seen in Fig. 8, ‘TPM Start’ and ‘TPM Sign’ are
the longest consecutive operations. The TPM is performing
an operation with its RSA private key in ‘TPM Sign’ which is
more complex than that with a RSA public-key. During the
‘TPM Start’ phase the TPM performs a series of internal self
tests to detect tampering and unauthorized commands.
The second large block is ‘TPM TWI’ which describes the
amount of time that is spent passing data to the TPM and
receiving data from it via the TWI bus clocked at
100 kHz. It shows as a lower current draw in Fig. 8. It can
be seen directly after the end of the ‘TPM Start’ sequence
and before the short spike in ‘TPM Verify’. The spike is
the actual verification operation performed by the TPM.
Similarly, the actual ‘TPM Encrypt’ operation is the spike
that follows another section of data transfer on the TWI
bus. During ‘TPM Verify’ the TPM uses the stored key of a
CA to verify the server certificate presented during the
handshake. The ‘TPM Encrypt’ operation is used to encrypt
a nonce with the server’s public key. If the mote is ex-
pected to authenticate itself during the handshake, it per-
forms a ‘TPM Sign’ operation to sign a hash over all

http://www.atmel.com/Images/doc6430.pdf
http://www.atmel.com/Images/doc6430.pdf
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previous handshake messages with its RSA private key.
Since a server authenticated handshake does not require
the expensive ‘TPM Sign’ operation it uses significantly less
energy but also provides weaker overall authentication
since an attacker could impersonate a mote toward the
server. Communication time is also shorter since the sen-
sor node does not send its certificate. [1,2].

If the mote is powered by two AA 2800-mAh batteries,
they have an energy of approximately 30,240 Joule. If 5% of
the energy is used for DTLS handshakes for (re) keying pur-
poses, which happen once per day, it could last for more
than 8.5 years for a fully authenticated handshake at
487.8 mJ each, or more than 14.5 years for a server authen-
ticated handshake at 286.4 mJ each. As stated earlier, the
calculation of a SHA-1 hash for 255 bytes takes 9 ms and
encryption with AES-128 another 12 ms. Given the current
draw for computation of 30 mA at 48 MHz clock speed
from Table 2, this results in the order of 9.9 lJ per Byte.
[1,2].

The energy consumption after the completion of the
handshake is closely related to the latency values from
Fig. 6 which portrait the influence of the network and pro-
cessing overhead introduced by DTLS. The increase in la-
tency naturally also leads to an increase in energy
consumption, since the radio has to be held in the trans-
mitting state for longer, preventing it from entering a sleep
state. Fig. 9 shows the overhead in percent that occurs
when a plaintext of a given size is encrypted and sent in
a secure DTLS record. The baseline for this comparison is
the time it would take to send the plaintext without any
additional headers or other meta data.

We assume that the energy cost to send a message with
length x via BLIP follows a discontinuous piecewise linear
function: cðx; a; bÞ ¼ x

100

� �
� aþ x � b. Here, a represents

the amount of energy needed to access the medium for
one IEEE 802.15.4 message and sending the preamble
and all other fixed energy costs for one message. The en-
ergy required for transmitting one byte of payload without
the fixed costs is represented by b. The constant 100 is the
maximum link layer message length defined by BLIP. Since
we are only interested in the relative overhead, we ignore
the current draw and only analyze the relation between
message length and time. For this purpose we used the
round-trip times measured in Fig. 6 for a simple ping and
divided them by two. We then used Matlab to find the

minimum of our error function errða; bÞ ¼
P

x2M
cðx;a;bÞ�tðxÞ

x

���
���

where M is the set of plaintext lengths for which we have
obtained measurement times and t(x) returns the mea-
sured time for a plaintext length x. This optimization re-
turned a = 27.368 and b = 0.072. With these results we
could then calculate the approximate time required to
send plaintext and larger DTLS records for the same
amount of plaintext.

Fig. 9 shows that the overhead introduced by the DTLS
record format is under 17% for small plaintext lengths. It
raises to over 100% when the DTLS record will not fit into
a single link-layer packet anymore. BLIP then has to frag-
ment the packet and bear the expensive medium access a
second time. One way to reduce the network overhead is
reducing the size of DTLS records. Our proposal is to em-
ploy the header compression detailed by Raza et al. [16].
This reduces the size of a DTLS record header from 13 to
5 bytes. Further savings are possible if the block cipher
mode of operation is changed from CBC to Galouis/Counter
mode of operation (GCM). The plaintext encrypted by GCM
will always lead to a ciphertext of the same length [24].
Since GCM belongs to the class of block cipher modes
called Authenticated Encryption with Associated Data
(AEAD) the SHA-1 HMAC is no longer necessary. Instead,
GCM can be used directly to authenticate the data and
associated headers. The 20 byte SHA-1 HMAC is thus re-
placed by the maximum length GCM auth tag which re-
quires 16 bytes. Additionally, the explicit IV of Fig. 1 is no
longer necessary because GCM is not susceptible to the
vulnerability that makes the IV necessary. The maximum
DTLS record overhead can thus be reduced from 64 bytes
down to 21 bytes: Five bytes for the compressed record
header plus the 16 byte GCM auth tag. Fig. 9 shows that
this more than doubles the area in which a DTLS record
only incurs little overhead over sending the plaintext
directly.

In order to put the TPM energy consumption and
processing time in context, we also performed measure-
ments of RSA and ECC in software. The RSA and ECC Tiny-
OS modules available to us did not support 2048-bit RSA
keys or their respective ECC equivalent. We therefore



Table 3
Software RSA (2048-bit key) on OPAL. One private key and two public key operations are required for a handshake.

Current Computation time Energy consumption

RSA – Public Key @ 48 MHz 30 mA 440 ms 52.8 mJ
RSA - Private Key (high memory) @ 48 MHz 30 mA 4725 ms 566.7 mJ
RSA – Private Key (low memory) @ 48 MHz 30 mA 14,895 ms 1786 mJ
Handshake RSA total @ 48 MHz 30 mA 5165 ms 619.5 mJ
RSA – Public Key @ 96 MHz 48 mA 221 ms 42.4 mJ
RSA – Private Key (high memory) @ 96 MHz 48 mA 2,362 ms 453.3 mJ
RSA – Private Key (low memory) @ 96 MHz 48 mA 7,447 ms 1,429 mJ
Handshake RSA total @ 96 MHz 48 mA 2583 ms 495.7 mJ

2720 T. Kothmayr et al. / Ad Hoc Networks 11 (2013) 2710–2723
ported the RSA and ECC implementation of the open
source project CyaSSL4 to TinyOS. This port includes many
of the optimization techniques adopted in TinyECC [25],
such as Barrett Reduction, Sliding Window multiplication,
Shamir’s Trick and others. It does not, however, include in-
line assembly instructions to speed up natural number
operations. Our implementation is made available to the
TinyOS community under the GPLv2 license.5 Table 3 shows
the results for individual RSA operations with a 2048-bit
RSA key performed in software. The figures for the hand-
shake only pertain to the DTLS client, as was the case in
our previous evaluations.

With a clock speed of 48 MHz, the software implemen-
tation requires more than twice as much time as the TPM
and almost 1.5 times the amount of energy. The respective
values for the TPM where 2348 ms and 466.2 mJ. This
advantage is dimished when the TPM is compared to soft-
ware RSA being performed at 96 MHz, where both require
roughly the same amount of time and energy. The RSA
implementation still has room for improvement through
embedded Assembler code and could thus be made more
time and energy efficient than the TPM on our platform.
However, the TPM still provides secure storage of the
RSA-key, which cannot be achieved by software means,
and the implementation complexity and RAM require-
ments of the TPM drivers are far less than those of a soft-
ware RSA implementation. Additionally, newer versions
of our TPM chip have more than halved the computation
time for 2048-bit RSA keys.

If secure storage of a mote’s private key is not a design
goal, we recommend a software implementation of ECC in-
stead. As Table 4 shows, it requires far less time and energy
than either solution for RSA. The figures given were com-
puted over the NIST named curve secp224r1, also known
as NIST P-224. It provides equivalent security to a 2048-
bit RSA key.

The operations performed during the DTLS handshake
are Elliptic Curve Diffie-Hellman (EC-DH) for key-agree-
ment followed by a two-way authentication via the Elliptic
Curve Digital Signature Algorithm (ECDSA) to avoid Man-
in-the-Middle attacks.
4 Embedded SSL Library: http://www.yassl.com/yaSSL/Products-
cyassl.html.

5 Source: http://www-db.in.tum.de/kothmayr/tinypkc.
6. Case study

In the department of Computer Science at the Techni-
sche Universität München the TinyIPFIX protocol was
developed in order to support an efficient data transmis-
sion in a wireless sensor network with constrained hard-
ware. One of the application scenarios is building
automation where different environmental data, such as
temperature, sound, light, and humidity, is monitored [2].

The TinyIPFIX protocol is based on the IETF Standard IP-
FIX which was developed for monitoring in large Peer-to-
Peer networks. It is interesting for sensor networks be-
cause it is easy to parse and has a high transmission effi-
ciency and little overhead due to its push-protocol
characteristic and its template-based design [26]. In sensor
networks the data is measured periodically in pre-defined
intervals and often processed and aggregated in the net-
work in order to save network traffic on the way to the
data sink. TinyIPFIX supports these properties and is de-
scribed in detail in references [26] and [2]. In order to pro-
vide more security, the established wireless sensor
network was extended by sensor hardware performing
DTLS security. As before, we chose the OPAL node [21].

The TinyIPFIX protocol introduced earlier is included on
the application layer in the performed solution of the
department, which allows an independent functionality
to the underlying layers. Thus, it is straightforward to inte-
grate a DTLS solution into the network while still using
TinyIPFIX as the application protocol of choice. However,
our current implementation requires more resources than
smaller motes, such as the TelosB mote, have to offer. Thus,
the network is subdivided into clusters where the OPAL
node works as a cluster head. It can also perform the in-
network message aggregation to reduce network overhead.

Fig. 11 shows a Wireshark snap shot of the afore men-
tioned network. At the beginning, the OPAL node performs
a DTLS handshake (marked in black) with the data sink in
order to establish a secure channel. After the successful
handshake messages transmitted via UDP are recorded.
In this phase the clusterhead (IP = fec0::c) has not yet
bound the data collectors (IP = {fec0::44f, fec::44e,-
fec::450}) to itself. As Fig. 10 shows, the network consists
of 15 nodes in total with three free data collectors. In the
presented deployment, the OPAL node performs message
aggregation with degree two, meaning it aggregates two
incoming data messages into one outgoing message. As
the Wireshark snap shot shows, the nodes with IP

http://www.yassl.com/yaSSL/Products-cyassl.html
http://www.yassl.com/yaSSL/Products-cyassl.html
http://www-db.in.tum.de/kothmayr/tinypkc


Table 4
Software ECC over 224-bit prime curve (secp224r1) on OPAL. One of each operation is required for a handshake.

Current Computation time Energy consumption

EC-DH @ 48 MHz 30 mA 387 ms 46.4 mJ
ECDSA sign @ 48 MHz 30 mA 432 ms 51.8 mJ
ECDSA verify @ 48 MHz 30 mA 795 ms 95.4 mJ
Handshake ECC total @ 48 MHz 30 mA 1614 ms 193.6 mJ
EC-DH @ 96 MHz 48 mA 187 ms 35.8 mJ
ECDSA sign @ 96 MHz 48 mA 205 ms 39.3 mJ
ECDSA verify @ 96 MHz 48 mA 380 ms 72.9 mJ
Handshake ECC total @ 96 MHz 48 mA 772 ms 92.6 mJ
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fec0::450 and fec0::44e win the competition and from re-
corded message no.60, respectively no.62, onwards they
are connected to the clusterhead and can transmit their
data via the DTLS secured channel. The node with IP
fec0::44f still uses an unsecured UDP connection to the
global data sink (marked in orange) [2].
7. Conclusion

We have introduced a standard based security architec-
ture with two-way authentication for the IoT. The authen-
tication is performed during a fully authenticated DTLS
handshake and based on an exchange of X.509 certificates
containing RSA keys. The extensive evaluation, based on
real IoT systems, shows that our proposed architecture
provides message integrity, confidentiality and authentic-
ity with affordable energy, end-to-end latency and mem-
ory overhead. This shows that DTLS is a feasible security
solution for the emerging IoT. We consider a fully authen-
ticated handshake with strong security through 2048-bit
RSA keys feasible for sensor nodes equipped with a TPM
chip, since a fully authenticated, RSA based handshake
consumes as little as 488 mJ. The memory requirement of
under 20 kB RAM are well below the 48 kB of memory of-
fered by our sensor node. Sensor nodes without a TPM chip
forego protection against physical tampering, but can still
perform a DTLS handshake based on ECC which could be
performed on our platform with little more than 100 mJ
of energy usage. Previous work has demonstrated tech-
niques to minimize packet headers for similar protocols
[14]. We plan to apply these techniques to DTLS in future
work together with an Authenticated Encryption with
Associated Data (AEAD) mode of operation to achieve the
reduction in network overhead we have outlined in Sec-
tion 5.4. Another focus will be the inclusion of more con-
strained nodes without a TPM in our architecture, for
which we plan to use a variant of the DTLS pre-shared
key cipher suites.
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